Generative Adversarial Networks Unlearning
- URL: http://arxiv.org/abs/2308.09881v1
- Date: Sat, 19 Aug 2023 02:21:21 GMT
- Title: Generative Adversarial Networks Unlearning
- Authors: Hui Sun, Tianqing Zhu, Wenhan Chang, and Wanlei Zhou
- Abstract summary: Machine unlearning has emerged as a solution to erase training data from trained machine learning models.
Research on Generative Adversarial Networks (GANs) is limited due to their unique architecture, including a generator and a discriminator.
We propose a cascaded unlearning approach for both item and class unlearning within GAN models, in which the unlearning and learning processes run in a cascaded manner.
- Score: 13.342749941357152
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning continues to develop, and data misuse scandals become
more prevalent, individuals are becoming increasingly concerned about their
personal information and are advocating for the right to remove their data.
Machine unlearning has emerged as a solution to erase training data from
trained machine learning models. Despite its success in classifiers, research
on Generative Adversarial Networks (GANs) is limited due to their unique
architecture, including a generator and a discriminator. One challenge pertains
to generator unlearning, as the process could potentially disrupt the
continuity and completeness of the latent space. This disruption might
consequently diminish the model's effectiveness after unlearning. Another
challenge is how to define a criterion that the discriminator should perform
for the unlearning images. In this paper, we introduce a substitution mechanism
and define a fake label to effectively mitigate these challenges. Based on the
substitution mechanism and fake label, we propose a cascaded unlearning
approach for both item and class unlearning within GAN models, in which the
unlearning and learning processes run in a cascaded manner. We conducted a
comprehensive evaluation of the cascaded unlearning technique using the MNIST
and CIFAR-10 datasets. Experimental results demonstrate that this approach
achieves significantly improved item and class unlearning efficiency, reducing
the required time by up to 185x and 284x for the MNIST and CIFAR-10 datasets,
respectively, in comparison to retraining from scratch. Notably, although the
model's performance experiences minor degradation after unlearning, this
reduction is negligible when dealing with a minimal number of images (e.g., 64)
and has no adverse effects on downstream tasks such as classification.
Related papers
- RESTOR: Knowledge Recovery through Machine Unlearning [71.75834077528305]
Large language models trained on web-scale corpora can memorize undesirable datapoints.
Many machine unlearning methods have been proposed that aim to 'erase' these datapoints from trained models.
We propose the RESTOR framework for machine unlearning based on the following dimensions.
arXiv Detail & Related papers (2024-10-31T20:54:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Distribution-Level Feature Distancing for Machine Unlearning: Towards a Better Trade-off Between Model Utility and Forgetting [4.220336689294245]
Recent studies have presented various machine unlearning algorithms to make a trained model unlearn the data to be forgotten.
We propose Distribution-Level Feature Distancing (DLFD), a novel method that efficiently forgets instances while preventing correlation collapse.
Our method synthesizes data samples so that the generated data distribution is far from the distribution of samples being forgotten in the feature space.
arXiv Detail & Related papers (2024-09-23T06:51:10Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Loss-Free Machine Unlearning [51.34904967046097]
We present a machine unlearning approach that is both retraining- and label-free.
Retraining-free approaches often utilise Fisher information, which is derived from the loss and requires labelled data which may not be available.
We present an extension to the Selective Synaptic Dampening algorithm, substituting the diagonal of the Fisher information matrix for the gradient of the l2 norm of the model output to approximate sensitivity.
arXiv Detail & Related papers (2024-02-29T16:15:34Z) - Dataset Condensation Driven Machine Unlearning [0.0]
Current trend in data regulation requirements and privacy-preserving machine learning has emphasized the importance of machine unlearning.
We propose new dataset condensation techniques and an innovative unlearning scheme that strikes a balance between machine unlearning privacy, utility, and efficiency.
We present a novel and effective approach to instrumenting machine unlearning and propose its application in defending against membership inference and model inversion attacks.
arXiv Detail & Related papers (2024-01-31T21:48:25Z) - DUCK: Distance-based Unlearning via Centroid Kinematics [40.2428948628001]
This work introduces a novel unlearning algorithm, denoted as Distance-based Unlearning via Centroid Kinematics (DUCK)
evaluation of the algorithm's performance is conducted across various benchmark datasets.
We also introduce a novel metric, called Adaptive Unlearning Score (AUS), encompassing not only the efficacy of the unlearning process in forgetting target data but also quantifying the performance loss relative to the original model.
arXiv Detail & Related papers (2023-12-04T17:10:25Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
Large language models (LLMs) have achieved significant progress from pre-training on and memorizing a wide range of textual data.
This process might suffer from privacy issues and violations of data protection regulations.
We propose an efficient unlearning framework that could efficiently update LLMs without having to retrain the whole model after data removals.
arXiv Detail & Related papers (2023-10-31T03:35:59Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.