An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
- URL: http://arxiv.org/abs/2308.10098v3
- Date: Sat, 16 Nov 2024 14:11:18 GMT
- Title: An adaptively inexact first-order method for bilevel optimization with application to hyperparameter learning
- Authors: Mohammad Sadegh Salehi, Subhadip Mukherjee, Lindon Roberts, Matthias J. Ehrhardt,
- Abstract summary: The proposed algorithm determines the required accuracy dynamically rather than manually selected before running it.
Our experiments demonstrate the efficiency and feasibility of our approach on a range of relevant problems in imaging and data science.
- Score: 2.247833425312671
- License:
- Abstract: Various tasks in data science are modeled utilizing the variational regularization approach, where manually selecting regularization parameters presents a challenge. The difficulty gets exacerbated when employing regularizers involving a large number of hyperparameters. To overcome this challenge, bilevel learning can be employed to learn such parameters from data. However, neither exact function values nor exact gradients with respect to the hyperparameters are attainable, necessitating methods that only rely on inexact evaluation of such quantities. State-of-the-art inexact gradient-based methods a priori select a sequence of the required accuracies and cannot identify an appropriate step size since the Lipschitz constant of the hypergradient is unknown. In this work, we propose an algorithm with backtracking line search that only relies on inexact function evaluations and hypergradients and show convergence to a stationary point. Furthermore, the proposed algorithm determines the required accuracy dynamically rather than manually selected before running it. Our numerical experiments demonstrate the efficiency and feasibility of our approach for hyperparameter estimation on a range of relevant problems in imaging and data science such as total variation and field of experts denoising and multinomial logistic regression. Particularly, the results show that the algorithm is robust to its own hyperparameters such as the initial accuracies and step size.
Related papers
- Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Score Function Gradient Estimation to Widen the Applicability of Decision-Focused Learning [17.962860438133312]
Decision-focused learning (DFL) paradigm overcomes limitation by training to directly minimize a task loss, e.g. regret.
We propose an alternative method that makes no such assumptions, it combines smoothing with score function estimation which works on any task loss.
Experiments show that it typically requires more epochs, but that it is on par with specialized methods and performs especially well for the difficult case of problems with uncertainty in the constraints, in terms of solution quality, scalability, or both.
arXiv Detail & Related papers (2023-07-11T12:32:13Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - Analyzing Inexact Hypergradients for Bilevel Learning [0.09669369645900441]
We introduce a unified framework for computing hypergradients that generalizes existing methods based on the implicit function theorem and automatic differentiation/backpropagation.
Our numerical results show that, surprisingly, for efficient bilevel optimization, the choice of hypergradient algorithm is at least as important as the choice of lower-level solver.
arXiv Detail & Related papers (2023-01-11T23:54:27Z) - Scalable Gaussian Process Hyperparameter Optimization via Coverage
Regularization [0.0]
We present a novel algorithm which estimates the smoothness and length-scale parameters in the Matern kernel in order to improve robustness of the resulting prediction uncertainties.
We achieve improved UQ over leave-one-out likelihood while maintaining a high degree of scalability as demonstrated in numerical experiments.
arXiv Detail & Related papers (2022-09-22T19:23:37Z) - Gaussian Process Uniform Error Bounds with Unknown Hyperparameters for
Safety-Critical Applications [71.23286211775084]
We introduce robust Gaussian process uniform error bounds in settings with unknown hyper parameters.
Our approach computes a confidence region in the space of hyper parameters, which enables us to obtain a probabilistic upper bound for the model error.
Experiments show that the bound performs significantly better than vanilla and fully Bayesian processes.
arXiv Detail & Related papers (2021-09-06T17:10:01Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Online Hyperparameter Search Interleaved with Proximal Parameter Updates [9.543667840503739]
We develop a method that relies on the structure of proximal gradient methods and does not require a smooth cost function.
Such a method is applied to Leave-one-out (LOO)-validated Lasso and Group Lasso.
Numerical experiments corroborate the convergence of the proposed method to a local optimum of the LOO validation error curve.
arXiv Detail & Related papers (2020-04-06T15:54:03Z) - Implicit differentiation of Lasso-type models for hyperparameter
optimization [82.73138686390514]
We introduce an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems.
Our approach scales to high-dimensional data by leveraging the sparsity of the solutions.
arXiv Detail & Related papers (2020-02-20T18:43:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.