Robust Mixture-of-Expert Training for Convolutional Neural Networks
- URL: http://arxiv.org/abs/2308.10110v1
- Date: Sat, 19 Aug 2023 20:58:21 GMT
- Title: Robust Mixture-of-Expert Training for Convolutional Neural Networks
- Authors: Yihua Zhang, Ruisi Cai, Tianlong Chen, Guanhua Zhang, Huan Zhang,
Pin-Yu Chen, Shiyu Chang, Zhangyang Wang, Sijia Liu
- Abstract summary: Sparsely-gated Mixture of Expert (MoE) has demonstrated a great promise to enable high-accuracy and ultra-efficient model inference.
We propose a new router-expert alternating Adversarial training framework for MoE, termed AdvMoE.
We find that AdvMoE achieves 1% 4% adversarial robustness improvement over the original dense CNN, and enjoys the efficiency merit of sparsity-gated MoE.
- Score: 141.3531209949845
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sparsely-gated Mixture of Expert (MoE), an emerging deep model architecture,
has demonstrated a great promise to enable high-accuracy and ultra-efficient
model inference. Despite the growing popularity of MoE, little work
investigated its potential to advance convolutional neural networks (CNNs),
especially in the plane of adversarial robustness. Since the lack of robustness
has become one of the main hurdles for CNNs, in this paper we ask: How to
adversarially robustify a CNN-based MoE model? Can we robustly train it like an
ordinary CNN model? Our pilot study shows that the conventional adversarial
training (AT) mechanism (developed for vanilla CNNs) no longer remains
effective to robustify an MoE-CNN. To better understand this phenomenon, we
dissect the robustness of an MoE-CNN into two dimensions: Robustness of routers
(i.e., gating functions to select data-specific experts) and robustness of
experts (i.e., the router-guided pathways defined by the subnetworks of the
backbone CNN). Our analyses show that routers and experts are hard to adapt to
each other in the vanilla AT. Thus, we propose a new router-expert alternating
Adversarial training framework for MoE, termed AdvMoE. The effectiveness of our
proposal is justified across 4 commonly-used CNN model architectures over 4
benchmark datasets. We find that AdvMoE achieves 1% ~ 4% adversarial robustness
improvement over the original dense CNN, and enjoys the efficiency merit of
sparsity-gated MoE, leading to more than 50% inference cost reduction. Codes
are available at https://github.com/OPTML-Group/Robust-MoE-CNN.
Related papers
- OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
We reexamine the design distinctions and test the limits of what a sparse CNN can achieve.
We propose two key components, i.e., adaptive receptive fields (spatially) and adaptive relation, to bridge the gap.
This exploration led to the creation of Omni-Adaptive 3D CNNs (OA-CNNs), a family of networks that integrates a lightweight module.
arXiv Detail & Related papers (2024-03-21T14:06:38Z) - Reusing Convolutional Neural Network Models through Modularization and
Composition [22.823870645316397]
We propose two modularization approaches named CNNSplitter and GradSplitter.
CNNSplitter decomposes a trained convolutional neural network (CNN) model into $N$ small reusable modules.
The resulting modules can be reused to patch existing CNN models or build new CNN models through composition.
arXiv Detail & Related papers (2023-11-08T03:18:49Z) - An Efficient Evolutionary Deep Learning Framework Based on Multi-source
Transfer Learning to Evolve Deep Convolutional Neural Networks [8.40112153818812]
Convolutional neural networks (CNNs) have constantly achieved better performance over years by introducing more complex topology, and enlarging the capacity towards deeper and wider CNNs.
The computational cost is still the bottleneck of automatically designing CNNs.
In this paper, inspired by transfer learning, a new evolutionary computation based framework is proposed to efficiently evolve CNNs.
arXiv Detail & Related papers (2022-12-07T20:22:58Z) - Towards Robust k-Nearest-Neighbor Machine Translation [72.9252395037097]
k-Nearest-Neighbor Machine Translation (kNN-MT) becomes an important research direction of NMT in recent years.
Its main idea is to retrieve useful key-value pairs from an additional datastore to modify translations without updating the NMT model.
The underlying retrieved noisy pairs will dramatically deteriorate the model performance.
We propose a confidence-enhanced kNN-MT model with robust training to alleviate the impact of noise.
arXiv Detail & Related papers (2022-10-17T07:43:39Z) - Patching Weak Convolutional Neural Network Models through Modularization
and Composition [19.986199290508925]
A convolutional neuron network (CNN) model for classification tasks often performs unsatisfactorily.
We propose a compressed modularization approach, CNNSplitter, which decomposes a strong CNN model for $N$-class classification into $N$ smaller CNN modules.
We show that CNNSplitter can patch a weak CNN model through modularization and composition, thus providing a new solution for developing robust CNN models.
arXiv Detail & Related papers (2022-09-11T15:26:16Z) - Exploiting Hybrid Models of Tensor-Train Networks for Spoken Command
Recognition [9.262289183808035]
This work aims to design a low complexity spoken command recognition (SCR) system.
We exploit a deep hybrid architecture of a tensor-train (TT) network to build an end-to-end SRC pipeline.
Our proposed CNN+(TT-DNN) model attains a competitive accuracy of 96.31% with 4 times fewer model parameters than the CNN model.
arXiv Detail & Related papers (2022-01-11T05:57:38Z) - Exploring Architectural Ingredients of Adversarially Robust Deep Neural
Networks [98.21130211336964]
Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks.
In this paper, we investigate the impact of network width and depth on the robustness of adversarially trained DNNs.
arXiv Detail & Related papers (2021-10-07T23:13:33Z) - Transformed CNNs: recasting pre-trained convolutional layers with
self-attention [17.96659165573821]
Vision Transformers (ViT) have emerged as a powerful alternative to convolutional networks (CNNs)
In this work, we explore the idea of reducing the time spent training these layers by initializing them as convolutional layers.
With only 50 epochs of fine-tuning, the resulting T-CNNs demonstrate significant performance gains.
arXiv Detail & Related papers (2021-06-10T14:56:10Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - Exploring Deep Hybrid Tensor-to-Vector Network Architectures for
Regression Based Speech Enhancement [53.47564132861866]
We find that a hybrid architecture, namely CNN-TT, is capable of maintaining a good quality performance with a reduced model parameter size.
CNN-TT is composed of several convolutional layers at the bottom for feature extraction to improve speech quality.
arXiv Detail & Related papers (2020-07-25T22:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.