An Examination of the Compositionality of Large Generative Vision-Language Models
- URL: http://arxiv.org/abs/2308.10509v2
- Date: Sat, 30 Mar 2024 16:09:14 GMT
- Title: An Examination of the Compositionality of Large Generative Vision-Language Models
- Authors: Teli Ma, Rong Li, Junwei Liang,
- Abstract summary: Generative Vision-Language Models (GVLMs) have been constructed via multimodal instruction tuning.
In this paper, we examine both the evaluation metrics (VisualGPTScore, etc.) and current benchmarks for evaluating the compositionality of GVLMs.
We identify the syntactical bias in current benchmarks, which is exploited by the linguistic capability of GVLMs.
- Score: 7.639748270719836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the success of Large Language Models (LLMs), many Generative Vision-Language Models (GVLMs) have been constructed via multimodal instruction tuning. However, the performance of GVLMs in multimodal compositional reasoning remains under-explored. In this paper, we examine both the evaluation metrics (VisualGPTScore, etc.) and current benchmarks for evaluating the compositionality of GVLMs. We identify the syntactical bias in current benchmarks, which is exploited by the linguistic capability of GVLMs. The bias renders VisualGPTScore an insufficient metric for assessing GVLMs. To combat this, we first introduce a SyntaxBias Score, leveraging LLMs to quantify such bias for mitigation. A challenging new task is subsequently added to evaluate the robustness of GVLMs against inherent inclination toward syntactical correctness. Using the bias-mitigated datasets and the new task, we propose a novel benchmark, namely SyntActically DE-biased benchmark (SADE). Our study provides an unbiased benchmark for the compositionality of GVLMs, facilitating future research in this direction (Code and dataset are available at https://github.com/TeleeMa/SADE).
Related papers
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
We show that Large Language Models (LLMs) are biased evaluators as they exhibit familiarity bias and show skewed distributions of ratings.
We also found that LLMs are inconsistent evaluators, showing low "inter-sample" agreement and sensitivity to prompt differences that are insignificant to human understanding of text quality.
arXiv Detail & Related papers (2024-05-02T20:42:28Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks.
This paper outlines and validates GenCeption, a novel, annotation-free evaluation method.
It requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate.
arXiv Detail & Related papers (2024-02-22T21:22:04Z) - Vi(E)va LLM! A Conceptual Stack for Evaluating and Interpreting
Generative AI-based Visualizations [1.709620026135923]
Large language models (LLM) have become an interesting option for supporting generative tasks related to visualization.
This paper copes with the problem of modeling the evaluation of a generated visualization through an LLM.
We propose a theoretical evaluation stack, EvaLLM, that decomposes the evaluation effort in its atomic components.
arXiv Detail & Related papers (2024-02-03T14:28:55Z) - LLM-augmented Preference Learning from Natural Language [19.700169351688768]
Large Language Models (LLMs) are equipped to deal with larger context lengths.
LLMs can consistently outperform the SotA when the target text is large.
Few-shot learning yields better performance than zero-shot learning.
arXiv Detail & Related papers (2023-10-12T17:17:27Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.