Improving the Transferability of Adversarial Examples with Arbitrary
Style Transfer
- URL: http://arxiv.org/abs/2308.10601v1
- Date: Mon, 21 Aug 2023 09:58:13 GMT
- Title: Improving the Transferability of Adversarial Examples with Arbitrary
Style Transfer
- Authors: Zhijin Ge, Fanhua Shang, Hongying Liu, Yuanyuan Liu, Liang Wan, Wei
Feng, Xiaosen Wang
- Abstract summary: A style transfer network can alter the distribution of low-level visual features in an image while preserving semantic content for humans.
We propose a novel attack method named Style Transfer Method (STM) that utilizes a proposed arbitrary style transfer network to transform the images into different domains.
Our proposed method can significantly improve the adversarial transferability on either normally trained models or adversarially trained models.
- Score: 32.644062141738246
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks are vulnerable to adversarial examples crafted by
applying human-imperceptible perturbations on clean inputs. Although many
attack methods can achieve high success rates in the white-box setting, they
also exhibit weak transferability in the black-box setting. Recently, various
methods have been proposed to improve adversarial transferability, in which the
input transformation is one of the most effective methods. In this work, we
notice that existing input transformation-based works mainly adopt the
transformed data in the same domain for augmentation. Inspired by domain
generalization, we aim to further improve the transferability using the data
augmented from different domains. Specifically, a style transfer network can
alter the distribution of low-level visual features in an image while
preserving semantic content for humans. Hence, we propose a novel attack method
named Style Transfer Method (STM) that utilizes a proposed arbitrary style
transfer network to transform the images into different domains. To avoid
inconsistent semantic information of stylized images for the classification
network, we fine-tune the style transfer network and mix up the generated
images added by random noise with the original images to maintain semantic
consistency and boost input diversity. Extensive experimental results on the
ImageNet-compatible dataset show that our proposed method can significantly
improve the adversarial transferability on either normally trained models or
adversarially trained models than state-of-the-art input transformation-based
attacks. Code is available at: https://github.com/Zhijin-Ge/STM.
Related papers
- TranSegPGD: Improving Transferability of Adversarial Examples on
Semantic Segmentation [62.954089681629206]
We propose an effective two-stage adversarial attack strategy to improve the transferability of adversarial examples on semantic segmentation.
The proposed adversarial attack method can achieve state-of-the-art performance.
arXiv Detail & Related papers (2023-12-03T00:48:33Z) - Structure Invariant Transformation for better Adversarial
Transferability [9.272426833639615]
We propose a novel input transformation based attack, called Structure Invariant Attack (SIA)
SIA applies a random image transformation onto each image block to craft a set of diverse images for gradient calculation.
Experiments on the standard ImageNet dataset demonstrate that SIA exhibits much better transferability than the existing SOTA input transformation based attacks.
arXiv Detail & Related papers (2023-09-26T06:31:32Z) - Boosting Adversarial Transferability by Block Shuffle and Rotation [25.603307815394764]
We propose a novel input transformation based attack called block shuffle and rotation (BSR)
BSR splits the input image into several blocks, then randomly shuffles and rotates these blocks to construct a set of new images for gradient calculation.
Empirical evaluations on the ImageNet dataset demonstrate that BSR could achieve significantly better transferability than the existing input transformation based methods.
arXiv Detail & Related papers (2023-08-20T15:38:40Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models.
Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples.
We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
arXiv Detail & Related papers (2023-02-07T20:42:28Z) - Diffusion-based Image Translation using Disentangled Style and Content
Representation [51.188396199083336]
Diffusion-based image translation guided by semantic texts or a single target image has enabled flexible style transfer.
It is often difficult to maintain the original content of the image during the reverse diffusion.
We present a novel diffusion-based unsupervised image translation method using disentangled style and content representation.
Our experimental results show that the proposed method outperforms state-of-the-art baseline models in both text-guided and image-guided translation tasks.
arXiv Detail & Related papers (2022-09-30T06:44:37Z) - Adaptive Image Transformations for Transfer-based Adversarial Attack [73.74904401540743]
We propose a novel architecture, called Adaptive Image Transformation Learner (AITL)
Our elaborately designed learner adaptively selects the most effective combination of image transformations specific to the input image.
Our method significantly improves the attack success rates on both normally trained models and defense models under various settings.
arXiv Detail & Related papers (2021-11-27T08:15:44Z) - StyTr^2: Unbiased Image Style Transfer with Transformers [59.34108877969477]
The goal of image style transfer is to render an image with artistic features guided by a style reference while maintaining the original content.
Traditional neural style transfer methods are usually biased and content leak can be observed by running several times of the style transfer process with the same reference image.
We propose a transformer-based approach, namely StyTr2, to address this critical issue.
arXiv Detail & Related papers (2021-05-30T15:57:09Z) - Random Transformation of Image Brightness for Adversarial Attack [5.405413975396116]
adversarial examples are crafted by adding small, human-imperceptibles to the original images.
Deep neural networks are vulnerable to adversarial examples, which are crafted by adding small, human-imperceptibles to the original images.
We propose an adversarial example generation method based on this phenomenon, which can be integrated with Fast Gradient Sign Method.
Our method has a higher success rate for black-box attacks than other attack methods based on data augmentation.
arXiv Detail & Related papers (2021-01-12T07:00:04Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce robust models.
Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training.
arXiv Detail & Related papers (2020-09-18T17:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.