AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors
- URL: http://arxiv.org/abs/2308.10848v3
- Date: Mon, 23 Oct 2023 05:05:15 GMT
- Title: AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors
- Authors: Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min
Chan, Heyang Yu, Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, Jie Zhou
- Abstract summary: We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
- Score: 93.38830440346783
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous agents empowered by Large Language Models (LLMs) have undergone
significant improvements, enabling them to generalize across a broad spectrum
of tasks. However, in real-world scenarios, cooperation among individuals is
often required to enhance the efficiency and effectiveness of task
accomplishment. Hence, inspired by human group dynamics, we propose a
multi-agent framework \framework that can collaboratively and dynamically
adjust its composition as a greater-than-the-sum-of-its-parts system. Our
experiments demonstrate that \framework framework can effectively deploy
multi-agent groups that outperform a single agent. Furthermore, we delve into
the emergence of social behaviors among individual agents within a group during
collaborative task accomplishment. In view of these behaviors, we discuss some
possible strategies to leverage positive ones and mitigate negative ones for
improving the collaborative potential of multi-agent groups. Our codes for
\framework will soon be released at
\url{https://github.com/OpenBMB/AgentVerse}.
Related papers
- MorphAgent: Empowering Agents through Self-Evolving Profiles and Decentralized Collaboration [8.078098082305575]
This paper introduces MorphAgent, a novel framework for decentralized multi-agent collaboration.
MorphAgent employs self-evolving agent profiles, optimized through three key metrics.
Our experimental results show that MorphAgent outperforms traditional static-role MAS in terms of task performance and adaptability to changing requirements.
arXiv Detail & Related papers (2024-10-19T09:10:49Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Scaling Large-Language-Model-based Multi-Agent Collaboration [75.5241464256688]
Pioneering advancements in large language model-powered agents have underscored the design pattern of multi-agent collaboration.
Inspired by the neural scaling law, this study investigates whether a similar principle applies to increasing agents in multi-agent collaboration.
arXiv Detail & Related papers (2024-06-11T11:02:04Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Learning to Learn Group Alignment: A Self-Tuning Credo Framework with
Multiagent Teams [1.370633147306388]
Mixed incentives among a population with multiagent teams has been shown to have advantages over a fully cooperative system.
We propose a framework where individual learning agents self-regulate their configuration of incentives through various parts of their reward function.
arXiv Detail & Related papers (2023-04-14T18:16:19Z) - Rethinking Trajectory Prediction via "Team Game" [118.59480535826094]
We present a novel formulation for multi-agent trajectory prediction, which explicitly introduces the concept of interactive group consensus.
On two multi-agent settings, i.e. team sports and pedestrians, the proposed framework consistently achieves superior performance compared to existing methods.
arXiv Detail & Related papers (2022-10-17T07:16:44Z) - Multi-agent Deep Covering Skill Discovery [50.812414209206054]
We propose Multi-agent Deep Covering Option Discovery, which constructs the multi-agent options through minimizing the expected cover time of the multiple agents' joint state space.
Also, we propose a novel framework to adopt the multi-agent options in the MARL process.
We show that the proposed algorithm can effectively capture the agent interactions with the attention mechanism, successfully identify multi-agent options, and significantly outperforms prior works using single-agent options or no options.
arXiv Detail & Related papers (2022-10-07T00:40:59Z) - BGC: Multi-Agent Group Belief with Graph Clustering [1.9949730506194252]
We propose a semi-communication method to enable agents can exchange information without communication.
Inspired by the neighborhood cognitive consistency, we propose a group-based module to divide adjacent agents into a small group and minimize in-group agents' beliefs.
Results reveal that the proposed method achieves a significant improvement in the SMAC benchmark.
arXiv Detail & Related papers (2020-08-20T07:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.