A Simple Framework for Multi-mode Spatial-Temporal Data Modeling
- URL: http://arxiv.org/abs/2308.11204v1
- Date: Tue, 22 Aug 2023 05:41:20 GMT
- Title: A Simple Framework for Multi-mode Spatial-Temporal Data Modeling
- Authors: Zihang Liu, Le Yu, Tongyu Zhu, Leiei Sun
- Abstract summary: We propose a simple framework for multi-mode spatial-temporal data modeling to bring both effectiveness and efficiency together.
Specifically, we design a general cross-mode spatial relationships learning component to adaptively establish connections between multiple modes.
Experiments on three real-world datasets show that our model can consistently outperform the baselines with lower space and time complexity.
- Score: 4.855443906457102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spatial-temporal data modeling aims to mine the underlying spatial
relationships and temporal dependencies of objects in a system. However, most
existing methods focus on the modeling of spatial-temporal data in a single
mode, lacking the understanding of multiple modes. Though very few methods have
been presented to learn the multi-mode relationships recently, they are built
on complicated components with higher model complexities. In this paper, we
propose a simple framework for multi-mode spatial-temporal data modeling to
bring both effectiveness and efficiency together. Specifically, we design a
general cross-mode spatial relationships learning component to adaptively
establish connections between multiple modes and propagate information along
the learned connections. Moreover, we employ multi-layer perceptrons to capture
the temporal dependencies and channel correlations, which are conceptually and
technically succinct. Experiments on three real-world datasets show that our
model can consistently outperform the baselines with lower space and time
complexity, opening up a promising direction for modeling spatial-temporal
data. The generalizability of the cross-mode spatial relationships learning
module is also validated.
Related papers
- ComboStoc: Combinatorial Stochasticity for Diffusion Generative Models [65.82630283336051]
We show that the space spanned by the combination of dimensions and attributes is insufficiently sampled by existing training scheme of diffusion generative models.
We present a simple fix to this problem by constructing processes that fully exploit the structures, hence the name ComboStoc.
arXiv Detail & Related papers (2024-05-22T15:23:10Z) - Multi-Modality Spatio-Temporal Forecasting via Self-Supervised Learning [11.19088022423885]
We propose a novel MoST learning framework via Self-Supervised Learning, namely MoSSL.
Results on two real-world MoST datasets verify the superiority of our approach compared with the state-of-the-art baselines.
arXiv Detail & Related papers (2024-05-06T08:24:06Z) - Representation Alignment Contrastive Regularization for Multi-Object Tracking [29.837560662395713]
Mainstream-performance in multi-object tracking algorithms relies on modeling heavily-temporal relationships during the data association stage.
This work aims to simplify deep learning-based,temporal relationship models and introduce interpretability into data association designs.
arXiv Detail & Related papers (2024-04-03T08:33:08Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
Existing methods are limited in weak-temporal modeling capability.
We propose a Decoupled Scoupled Framework (DeST) to address the issues.
DeST significantly outperforms current state-of-the-art methods with less computational complexity.
arXiv Detail & Related papers (2023-12-10T09:11:39Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Attention-based Spatial-Temporal Graph Convolutional Recurrent Networks
for Traffic Forecasting [12.568905377581647]
Traffic forecasting is one of the most fundamental problems in transportation science and artificial intelligence.
Existing methods cannot accurately model both long-term and short-term temporal correlations simultaneously.
We propose a novel spatial-temporal neural network framework, which consists of a graph convolutional recurrent module (GCRN) and a global attention module.
arXiv Detail & Related papers (2023-02-25T03:37:00Z) - Dynamic Spatiotemporal Graph Convolutional Neural Networks for Traffic
Data Imputation with Complex Missing Patterns [3.9318191265352196]
We propose a novel deep learning framework called Dynamic Spatio Graph Contemporal Networks (DSTG) to impute missing traffic data.
We introduce a graph structure estimation technique to model the dynamic spatial dependencies real-time traffic information and road network structure.
Our proposed model outperforms existing deep learning models in all kinds of missing scenarios and the graph structure estimation technique contributes to the model performance.
arXiv Detail & Related papers (2021-09-17T05:47:17Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.