Evaluating Large Language Models on Graphs: Performance Insights and
Comparative Analysis
- URL: http://arxiv.org/abs/2308.11224v2
- Date: Sat, 9 Sep 2023 03:14:10 GMT
- Title: Evaluating Large Language Models on Graphs: Performance Insights and
Comparative Analysis
- Authors: Chang Liu, Bo Wu
- Abstract summary: We evaluate the capabilities of four Large Language Models (LLMs) in addressing several analytical problems with graph data.
We employ four distinct evaluation metrics: Correctness, Fidelity, and Rectification.
GPT models can generate logical and coherent results, outperforming alternatives in correctness.
- Score: 7.099257763803159
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have garnered considerable interest within both
academic and industrial. Yet, the application of LLMs to graph data remains
under-explored. In this study, we evaluate the capabilities of four LLMs in
addressing several analytical problems with graph data. We employ four distinct
evaluation metrics: Comprehension, Correctness, Fidelity, and Rectification.
Our results show that: 1) LLMs effectively comprehend graph data in natural
language and reason with graph topology. 2) GPT models can generate logical and
coherent results, outperforming alternatives in correctness. 3) All examined
LLMs face challenges in structural reasoning, with techniques like zero-shot
chain-of-thought and few-shot prompting showing diminished efficacy. 4) GPT
models often produce erroneous answers in multi-answer tasks, raising concerns
in fidelity. 5) GPT models exhibit elevated confidence in their outputs,
potentially hindering their rectification capacities. Notably, GPT-4 has
demonstrated the capacity to rectify responses from GPT-3.5-turbo and its own
previous iterations. The code is available at:
https://github.com/Ayame1006/LLMtoGraph.
Related papers
- CausalGraph2LLM: Evaluating LLMs for Causal Queries [49.337170619608145]
Causality is essential in scientific research, enabling researchers to interpret true relationships between variables.
With the recent advancements in Large Language Models (LLMs), there is an increasing interest in exploring their capabilities in causal reasoning.
arXiv Detail & Related papers (2024-10-21T12:12:21Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
We introduce ProGraph, a benchmark for large language models (LLMs) to process graphs.
Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.
We propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries.
arXiv Detail & Related papers (2024-09-29T11:38:45Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
We focus on the graph reasoning ability of Large Language Models (LLMs)
We revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem.
Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these fundamental tasks.
arXiv Detail & Related papers (2024-08-18T16:26:39Z) - GraphArena: Benchmarking Large Language Models on Graph Computational Problems [25.72820021030033]
"arms race" of Large Language Models (LLMs) demands novel, challenging, and diverse benchmarks to examine their progresses.
We introduce GraphArena, a benchmarking tool to evaluate models on graph computational problems using million-scale real-world graphs.
arXiv Detail & Related papers (2024-06-29T09:19:23Z) - Evaluating Mathematical Reasoning of Large Language Models: A Focus on Error Identification and Correction [35.01097297297534]
Existing evaluations of Large Language Models (LLMs) focus on problem-solving from the examinee perspective.
We define four evaluation tasks for error identification and correction along with a new dataset with annotated error types and steps.
Our principal findings indicate that GPT-4 outperforms all models, while open-source model LLaMA-2-7B demonstrates comparable abilities to closed-source models GPT-3.5 and Gemini Pro.
arXiv Detail & Related papers (2024-06-02T14:16:24Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
Large Language and Graph Assistant (LLaGA) is an innovative model to handle the complexities of graph-structured data.
LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks.
Our experiments show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model.
arXiv Detail & Related papers (2024-02-13T02:03:26Z) - GraphLLM: Boosting Graph Reasoning Ability of Large Language Model [7.218768686958888]
GraphLLM is a pioneering end-to-end approach that integrates graph learning models with Large Language Models.
Our empirical evaluations across four fundamental graph reasoning tasks validate the effectiveness of GraphLLM.
The results exhibit a substantial average accuracy enhancement of 54.44%, alongside a noteworthy context reduction of 96.45%.
arXiv Detail & Related papers (2023-10-09T16:42:00Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Prompting GPT-3 To Be Reliable [117.23966502293796]
This work decomposes reliability into four facets: generalizability, fairness, calibration, and factuality.
We find that GPT-3 outperforms smaller-scale supervised models by large margins on all these facets.
arXiv Detail & Related papers (2022-10-17T14:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.