Multi-Objective Improvement of Android Applications
- URL: http://arxiv.org/abs/2308.11387v1
- Date: Tue, 22 Aug 2023 12:26:43 GMT
- Title: Multi-Objective Improvement of Android Applications
- Authors: James Callan and Justyna Petke
- Abstract summary: We write tests for 21 versions of 7 Android apps, creating a new benchmark for performance improvements.
We use Genetic improvement, a search-based technique that navigates the space of software variants to find improved software.
We were able to improve execution time by up to 35%, and memory use by up to 33% in these apps.
- Score: 10.660480034605243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-functional properties, such as runtime or memory use, are important to
mobile app users and developers, as they affect user experience. Previous work
on automated improvement of non-functional properties in mobile apps failed to
address the inherent trade-offs between such properties. We propose a practical
approach and the first open-source tool, GIDroid (2023), for multi-objective
automated improvement of Android apps. In particular, we use Genetic
improvement, a search-based technique that navigates the space of software
variants to find improved software. We use a simulation-based testing framework
to greatly improve the speed of search. GIDroid contains three state-of-the-art
multi-objective algorithms, and two new mutation operators, which cache the
results of method calls. Genetic improvement relies on testing to validate
patches. Previous work showed that tests in open-source Android applications
are scarce. We thus wrote tests for 21 versions of 7 Android apps, creating a
new benchmark for performance improvements. We used GIDroid to improve versions
of mobile apps where developers had previously found improvements to runtime,
memory, and bandwidth use. Our technique automatically re-discovers 64% of
existing improvements. We then applied our approach to current versions of
software in which there were no known improvements. We were able to improve
execution time by up to 35%, and memory use by up to 33% in these apps.
Related papers
- Detecting and Characterising Mobile App Metamorphosis in Google Play Store [0.0]
We propose a novel and efficient multi-modal search methodology to identify apps undergoing metamorphosis.
Our methodology uncovers various metamorphosis scenarios, including re-births, re-branding, re-purposing, and others.
We shed light on the concealed security and privacy risks that lurk within, potentially impacting even tech-savvy end-users.
arXiv Detail & Related papers (2024-07-19T03:26:40Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
In reasoning tasks, even a minor error can cascade into inaccurate results.
We develop a method that avoids introducing external resources, relying instead on perturbations to the input.
Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks.
arXiv Detail & Related papers (2024-03-04T16:21:54Z) - Autonomous Large Language Model Agents Enabling Intent-Driven Mobile GUI
Testing [17.24045904273874]
We propose DroidAgent, an autonomous GUI testing agent for Android.
It is based on Large Language Models and support mechanisms such as long- and short-term memory.
DroidAgent achieved 61% activity coverage, compared to 51% for current state-of-the-art GUI testing techniques.
arXiv Detail & Related papers (2023-11-15T01:59:40Z) - Make LLM a Testing Expert: Bringing Human-like Interaction to Mobile GUI
Testing via Functionality-aware Decisions [23.460051600514806]
GPTDroid is a Q&A-based GUI testing framework for mobile apps.
We introduce a functionality-aware memory prompting mechanism.
It outperforms the best baseline by 32% in activity coverage, and detects 31% more bugs at a faster rate.
arXiv Detail & Related papers (2023-10-24T12:30:26Z) - Neural Embeddings for Web Testing [49.66745368789056]
Existing crawlers rely on app-specific, threshold-based, algorithms to assess state equivalence.
We propose WEBEMBED, a novel abstraction function based on neural network embeddings and threshold-free classifiers.
Our evaluation on nine web apps shows that WEBEMBED outperforms state-of-the-art techniques by detecting near-duplicates more accurately.
arXiv Detail & Related papers (2023-06-12T19:59:36Z) - Chatting with GPT-3 for Zero-Shot Human-Like Mobile Automated GUI
Testing [23.460051600514806]
We propose GPTDroid, asking Large Language Model to chat with the mobile apps by passing the GUI page information to LLM to elicit testing scripts.
Within it, we extract the static context of the GUI page and the dynamic context of the iterative testing process.
We evaluate GPTDroid on 86 apps from Google Play, and its activity coverage is 71%, with 32% higher than the best baseline, and can detect 36% more bugs with faster speed than the best baseline.
arXiv Detail & Related papers (2023-05-16T13:46:52Z) - SwiftFormer: Efficient Additive Attention for Transformer-based
Real-time Mobile Vision Applications [98.90623605283564]
We introduce a novel efficient additive attention mechanism that effectively replaces the quadratic matrix multiplication operations with linear element-wise multiplications.
We build a series of models called "SwiftFormer" which achieves state-of-the-art performance in terms of both accuracy and mobile inference speed.
Our small variant achieves 78.5% top-1 ImageNet-1K accuracy with only 0.8 ms latency on iPhone 14, which is more accurate and 2x faster compared to MobileViT-v2.
arXiv Detail & Related papers (2023-03-27T17:59:58Z) - DeepPERF: A Deep Learning-Based Approach For Improving Software
Performance [8.251500418379942]
We present DeepPERF, a transformer-based approach to suggest performance improvements for C# applications.
Our evaluation shows that our model can generate the same performance improvement suggestion as the developer fix in 53% of the cases.
We evaluate DeepPERF on 50 open source C# repositories on GitHub.
arXiv Detail & Related papers (2022-06-27T20:35:52Z) - Analysis of Longitudinal Changes in Privacy Behavior of Android
Applications [79.71330613821037]
In this paper, we examine the trends in how Android apps have changed over time with respect to privacy.
We examine the adoption of HTTPS, whether apps scan the device for other installed apps, the use of permissions for privacy-sensitive data, and the use of unique identifiers.
We find that privacy-related behavior has improved with time as apps continue to receive updates, and that the third-party libraries used by apps are responsible for more issues with privacy.
arXiv Detail & Related papers (2021-12-28T16:21:31Z) - Tasks, stability, architecture, and compute: Training more effective
learned optimizers, and using them to train themselves [53.37905268850274]
We introduce a new, hierarchical, neural network parameterized, hierarchical with access to additional features such as validation loss to enable automatic regularization.
Most learneds have been trained on only a single task, or a small number of tasks.
We train ours on thousands of tasks, making use of orders of magnitude more compute, resulting in generalizes that perform better to unseen tasks.
arXiv Detail & Related papers (2020-09-23T16:35:09Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
We propose a novel emerging issue detection approach named MERIT.
Based on the AOBST model, we infer the topics negatively reflected in user reviews for one app version.
Experiments on popular apps from Google Play and Apple's App Store demonstrate the effectiveness of MERIT.
arXiv Detail & Related papers (2020-08-23T06:34:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.