Multi-scale Transformer Pyramid Networks for Multivariate Time Series
Forecasting
- URL: http://arxiv.org/abs/2308.11946v1
- Date: Wed, 23 Aug 2023 06:40:05 GMT
- Title: Multi-scale Transformer Pyramid Networks for Multivariate Time Series
Forecasting
- Authors: Yifan Zhang, Rui Wu, Sergiu M. Dascalu, Frederick C. Harris Jr
- Abstract summary: We introduce a dimension invariant embedding technique that captures short-term temporal dependencies.
We present a novel Multi-scale Transformer Pyramid Network (MTPNet) specifically designed to capture temporal dependencies at multiple unconstrained scales.
- Score: 8.739572744117634
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate Time Series (MTS) forecasting involves modeling temporal
dependencies within historical records. Transformers have demonstrated
remarkable performance in MTS forecasting due to their capability to capture
long-term dependencies. However, prior work has been confined to modeling
temporal dependencies at either a fixed scale or multiple scales that
exponentially increase (most with base 2). This limitation hinders their
effectiveness in capturing diverse seasonalities, such as hourly and daily
patterns. In this paper, we introduce a dimension invariant embedding technique
that captures short-term temporal dependencies and projects MTS data into a
higher-dimensional space, while preserving the dimensions of time steps and
variables in MTS data. Furthermore, we present a novel Multi-scale Transformer
Pyramid Network (MTPNet), specifically designed to effectively capture temporal
dependencies at multiple unconstrained scales. The predictions are inferred
from multi-scale latent representations obtained from transformers at various
scales. Extensive experiments on nine benchmark datasets demonstrate that the
proposed MTPNet outperforms recent state-of-the-art methods.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - Considering Nonstationary within Multivariate Time Series with
Variational Hierarchical Transformer for Forecasting [12.793705636683402]
We develop a powerful hierarchical probabilistic generative module to consider the non-stationarity and intrinsic characteristics within MTS.
We then combine it with transformer for a well-defined variational generative dynamic model named Hierarchical Time series Variational Transformer (HTV-Trans)
Being a powerful probabilistic model, HTV-Trans is utilized to learn expressive representations of MTS and applied to forecasting tasks.
arXiv Detail & Related papers (2024-03-08T16:04:36Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Multi-resolution Time-Series Transformer for Long-term Forecasting [24.47302799009906]
We propose a novel framework, Multi-resolution Time-Series Transformer (MTST), for simultaneous modeling of diverse temporal patterns at different resolutions.
In contrast to many existing time-series transformers, we employ relative positional encoding, which is better suited for extracting periodic components at different scales.
arXiv Detail & Related papers (2023-11-07T17:18:52Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal
and Channel Mixing [18.058617044421293]
This paper investigates the contributions and deficiencies of attention mechanisms on the performance of time series forecasting.
We propose MTS-Mixers, which use two factorized modules to capture temporal and channel dependencies.
Experimental results on several real-world datasets show that MTS-Mixers outperform existing Transformer-based models with higher efficiency.
arXiv Detail & Related papers (2023-02-09T08:52:49Z) - W-Transformers : A Wavelet-based Transformer Framework for Univariate
Time Series Forecasting [7.075125892721573]
We build a transformer model for non-stationary time series using wavelet-based transformer encoder architecture.
We evaluate our framework on several publicly available benchmark time series datasets from various domains.
arXiv Detail & Related papers (2022-09-08T17:39:38Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.