Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations
- URL: http://arxiv.org/abs/2308.11995v1
- Date: Wed, 23 Aug 2023 08:33:14 GMT
- Title: Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations
- Authors: Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna
Gottardi, Sanjeev Kwatra, Anu Venkatesh, Raefer Gabriel, Dilek Hakkani-Tur
- Abstract summary: Building socialbots that can have deep, engaging open-domain conversations with humans is one of the grand challenges of artificial intelligence (AI)
We introduce Topical-Chat, a knowledge-grounded human-human conversation dataset where the underlying knowledge spans 8 broad topics and conversation partners don't have explicitly defined roles.
We also train several state-of-the-art encoder-decoder conversational models on Topical-Chat and perform automated and human evaluation for benchmarking.
- Score: 8.03111197961603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building socialbots that can have deep, engaging open-domain conversations
with humans is one of the grand challenges of artificial intelligence (AI). To
this end, bots need to be able to leverage world knowledge spanning several
domains effectively when conversing with humans who have their own world
knowledge. Existing knowledge-grounded conversation datasets are primarily
stylized with explicit roles for conversation partners. These datasets also do
not explore depth or breadth of topical coverage with transitions in
conversations. We introduce Topical-Chat, a knowledge-grounded human-human
conversation dataset where the underlying knowledge spans 8 broad topics and
conversation partners don't have explicitly defined roles, to help further
research in open-domain conversational AI. We also train several
state-of-the-art encoder-decoder conversational models on Topical-Chat and
perform automated and human evaluation for benchmarking.
Related papers
- Does Collaborative Human-LM Dialogue Generation Help Information
Extraction from Human Dialogues? [55.28340832822234]
Problem-solving human dialogues in real applications can be much more complex than existing Wizard-of-Oz collections.
We introduce a human-in-the-loop dialogue generation framework capable of synthesizing realistic dialogues.
arXiv Detail & Related papers (2023-07-13T20:02:50Z) - Commonsense Reasoning for Conversational AI: A Survey of the State of
the Art [0.76146285961466]
The paper lists relevant training datasets and describes the primary approaches to include commonsense in conversational AI.
The paper presents preliminary observations of the limited commonsense capabilities of two state-of-the-art open dialogue models, BlenderBot3 and LaMDA.
arXiv Detail & Related papers (2023-02-15T19:55:57Z) - PLACES: Prompting Language Models for Social Conversation Synthesis [103.94325597273316]
We use a small set of expert-written conversations as in-context examples to synthesize a social conversation dataset using prompting.
We perform several thorough evaluations of our synthetic conversations compared to human-collected conversations.
arXiv Detail & Related papers (2023-02-07T05:48:16Z) - Dynamic Planning in Open-Ended Dialogue using Reinforcement Learning [35.67318830455459]
We develop a real-time, open-ended dialogue system that uses reinforcement learning (RL) to power a bot's conversational skill at scale.
Our work pairs the succinct embedding of the conversation state generated using SOTA (supervised) language models with RL techniques that are particularly suited to a dynamic action space.
arXiv Detail & Related papers (2022-07-25T16:12:33Z) - Knowledge-Grounded Conversational Data Augmentation with Generative
Conversational Networks [76.11480953550013]
We take a step towards automatically generating conversational data using Generative Conversational Networks.
We evaluate our approach on conversations with and without knowledge on the Topical Chat dataset.
arXiv Detail & Related papers (2022-07-22T22:37:14Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
Existing studies in dialogue system research mostly treat task-oriented dialogue and chit-chat as separate domains.
We investigate how task-oriented dialogue and knowledge-grounded chit-chat can be effectively integrated into a single model.
arXiv Detail & Related papers (2022-05-11T16:01:03Z) - Training Conversational Agents with Generative Conversational Networks [74.9941330874663]
We use Generative Conversational Networks to automatically generate data and train social conversational agents.
We evaluate our approach on TopicalChat with automatic metrics and human evaluators, showing that with 10% of seed data it performs close to the baseline that uses 100% of the data.
arXiv Detail & Related papers (2021-10-15T21:46:39Z) - Intelligent Conversational Android ERICA Applied to Attentive Listening
and Job Interview [41.789773897391605]
We have developed an intelligent conversational android ERICA.
We set up several social interaction tasks for ERICA, including attentive listening, job interview, and speed dating.
It has been evaluated with 40 senior people, engaged in conversation of 5-7 minutes without a conversation breakdown.
arXiv Detail & Related papers (2021-05-02T06:37:23Z) - KdConv: A Chinese Multi-domain Dialogue Dataset Towards Multi-turn
Knowledge-driven Conversation [66.99734491847076]
We propose a Chinese multi-domain knowledge-driven conversation dataset, KdConv, which grounds the topics in multi-turn conversations to knowledge graphs.
Our corpus contains 4.5K conversations from three domains (film, music, and travel), and 86K utterances with an average turn number of 19.0.
arXiv Detail & Related papers (2020-04-08T16:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.