From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning
- URL: http://arxiv.org/abs/2308.12032v5
- Date: Sat, 6 Apr 2024 03:52:04 GMT
- Title: From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning
- Authors: Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, Jing Xiao,
- Abstract summary: We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
- Score: 52.257422715393574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of Large Language Models (LLMs), the balance between instruction data quality and quantity is a focal point. Recognizing this, we introduce a self-guided methodology for LLMs to autonomously discern and select cherry samples from open-source datasets, effectively minimizing manual curation and potential cost for instruction tuning an LLM. Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability. Through the application of IFD, cherry samples can be pinpointed, leading to a marked uptick in model training efficiency. Empirical validations on datasets like Alpaca and WizardLM underpin our findings; with a mere $10\%$ of original data input, our strategy showcases improved results. This synthesis of self-guided cherry-picking and the IFD metric signifies a transformative leap in the instruction tuning of LLMs, promising both efficiency and resource-conscious advancements. Codes, data, and models are available: https://github.com/tianyi-lab/Cherry_LLM
Related papers
- Data Quality Control in Federated Instruction-tuning of Large Language Models [43.29678396558287]
We propose a new framework of federated instruction tuning of large language models (LLMs) with data quality control (FedDQC)
Our approach introduces an efficient metric to assess each client's instruction-response alignment (IRA), identifying potentially noisy data through single-shot inference.
We conduct extensive experiments on 4 synthetic and a real-world dataset, and compare our method with baselines adapted from centralized setting.
arXiv Detail & Related papers (2024-10-15T12:14:57Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment.
Experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%.
arXiv Detail & Related papers (2024-09-27T08:20:59Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
Low-quality data in the training set are usually detrimental to instruction tuning.
We propose a novel method, termed "reflection-tuning"
This approach utilizes an oracle LLM to recycle the original training data by introspecting and enhancing the quality of instructions and responses in the data.
arXiv Detail & Related papers (2023-10-18T05:13:47Z) - MLLM-DataEngine: An Iterative Refinement Approach for MLLM [62.30753425449056]
We propose a novel closed-loop system that bridges data generation, model training, and evaluation.
Within each loop, the MLLM-DataEngine first analyze the weakness of the model based on the evaluation results.
For targeting, we propose an Adaptive Bad-case Sampling module, which adjusts the ratio of different types of data.
For quality, we resort to GPT-4 to generate high-quality data with each given data type.
arXiv Detail & Related papers (2023-08-25T01:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.