An All Deep System for Badminton Game Analysis
- URL: http://arxiv.org/abs/2308.12645v2
- Date: Wed, 14 Feb 2024 15:59:35 GMT
- Title: An All Deep System for Badminton Game Analysis
- Authors: Po-Yung Chou, Yu-Chun Lo, Bo-Zheng Xie, Cheng-Hung Lin, Yu-Yung Kao
- Abstract summary: The CoachAI Badminton 2023 Track1 initiative aim to automatically detect events within badminton match videos.
We've implemented various deep learning methods to tackle the problems arising from noisy detectied data.
Our system garnered a score of 0.78 out of 1.0 in the challenge.
- Score: 0.0874967598360817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The CoachAI Badminton 2023 Track1 initiative aim to automatically detect
events within badminton match videos. Detecting small objects, especially the
shuttlecock, is of quite importance and demands high precision within the
challenge. Such detection is crucial for tasks like hit count, hitting time,
and hitting location. However, even after revising the well-regarded
shuttlecock detecting model, TrackNet, our object detection models still fall
short of the desired accuracy. To address this issue, we've implemented various
deep learning methods to tackle the problems arising from noisy detectied data,
leveraging diverse data types to improve precision. In this report, we detail
the detection model modifications we've made and our approach to the 11 tasks.
Notably, our system garnered a score of 0.78 out of 1.0 in the challenge. We
have released our source code in Github
https://github.com/jean50621/Badminton_Challenge
Related papers
- ODTFormer: Efficient Obstacle Detection and Tracking with Stereo Cameras Based on Transformer [12.58804521609764]
ODTFormer is a Transformer-based model to address both obstacle detection and tracking problems.
We report comparable accuracy to state-of-the-art obstacle tracking models while requiring only a fraction of their cost.
arXiv Detail & Related papers (2024-03-21T17:59:55Z) - Zero-shot Retrieval: Augmenting Pre-trained Models with Search Engines [83.65380507372483]
Large pre-trained models can dramatically reduce the amount of task-specific data required to solve a problem, but they often fail to capture domain-specific nuances out of the box.
This paper shows how to leverage recent advances in NLP and multi-modal learning to augment a pre-trained model with search engine retrieval.
arXiv Detail & Related papers (2023-11-29T05:33:28Z) - A Badminton Recognition and Tracking System Based on Context
Multi-feature Fusion [6.068573093901329]
Two trajectory clip trackers are designed based on different rules to capture the correct trajectory of the ball.
Two rounds of detection from coarse-grained to fine-grained are used to solve the challenges encountered in badminton detection.
arXiv Detail & Related papers (2023-06-26T08:07:56Z) - A New Perspective for Shuttlecock Hitting Event Detection [0.0]
This article introduces a novel approach to shuttlecock hitting event detection.
Instead of depending on generic methods, we capture the hitting action of players by reasoning over a sequence of images.
arXiv Detail & Related papers (2023-06-17T08:34:53Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
We ad-dress problems in a Bayesian tracking and detection framework parameterized by neural network outputs.
We propose a particle filter-based approximate sampling algorithm for tracking object state estimation.
Based on our particle filter inference algorithm, a semi-supervised learn-ing algorithm is utilized for learning tracking network on intermittent labeled frames.
arXiv Detail & Related papers (2022-05-05T00:18:57Z) - Benchmarking Intent Detection for Task-Oriented Dialog Systems [6.54201796167054]
Intent detection is a key component of modern goal-oriented dialog systems that accomplish a user task by predicting the intent of users' text input.
There are three primary challenges in designing robust and accurate intent detection models.
Our results show that Watson Assistant's intent detection model outperforms other commercial solutions.
arXiv Detail & Related papers (2020-12-07T18:58:57Z) - Tracklets Predicting Based Adaptive Graph Tracking [51.352829280902114]
We present an accurate and end-to-end learning framework for multi-object tracking, namely textbfTPAGT.
It re-extracts the features of the tracklets in the current frame based on motion predicting, which is the key to solve the problem of features inconsistent.
arXiv Detail & Related papers (2020-10-18T16:16:49Z) - Simultaneous Detection and Tracking with Motion Modelling for Multiple
Object Tracking [94.24393546459424]
We introduce Deep Motion Modeling Network (DMM-Net) that can estimate multiple objects' motion parameters to perform joint detection and association.
DMM-Net achieves PR-MOTA score of 12.80 @ 120+ fps for the popular UA-DETRAC challenge, which is better performance and orders of magnitude faster.
We also contribute a synthetic large-scale public dataset Omni-MOT for vehicle tracking that provides precise ground-truth annotations.
arXiv Detail & Related papers (2020-08-20T08:05:33Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
Region sampling or weighting is significantly important to the success of modern region-based object detectors.
We argue that sample weighting should be data-dependent and task-dependent.
We propose a unified sample weighting network to predict a sample's task weights.
arXiv Detail & Related papers (2020-06-11T16:19:16Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z) - Detection in Crowded Scenes: One Proposal, Multiple Predictions [79.28850977968833]
We propose a proposal-based object detector, aiming at detecting highly-overlapped instances in crowded scenes.
The key of our approach is to let each proposal predict a set of correlated instances rather than a single one in previous proposal-based frameworks.
Our detector can obtain 4.9% AP gains on challenging CrowdHuman dataset and 1.0% $textMR-2$ improvements on CityPersons dataset.
arXiv Detail & Related papers (2020-03-20T09:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.