PartSeg: Few-shot Part Segmentation via Part-aware Prompt Learning
- URL: http://arxiv.org/abs/2308.12757v1
- Date: Thu, 24 Aug 2023 13:03:42 GMT
- Title: PartSeg: Few-shot Part Segmentation via Part-aware Prompt Learning
- Authors: Mengya Han, Heliang Zheng, Chaoyue Wang, Yong Luo, Han Hu, Jing Zhang,
Yonggang Wen
- Abstract summary: We develop a novel method termed PartSeg for few-shot part segmentation based on multimodal learning.
We conduct extensive experiments on the PartImageNet and Pascal$_$Part datasets.
- Score: 44.48704588318053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we address the task of few-shot part segmentation, which aims
to segment the different parts of an unseen object using very few labeled
examples. It is found that leveraging the textual space of a powerful
pre-trained image-language model (such as CLIP) can be beneficial in learning
visual features. Therefore, we develop a novel method termed PartSeg for
few-shot part segmentation based on multimodal learning. Specifically, we
design a part-aware prompt learning method to generate part-specific prompts
that enable the CLIP model to better understand the concept of ``part'' and
fully utilize its textual space. Furthermore, since the concept of the same
part under different object categories is general, we establish relationships
between these parts during the prompt learning process. We conduct extensive
experiments on the PartImageNet and Pascal$\_$Part datasets, and the
experimental results demonstrated that our proposed method achieves
state-of-the-art performance.
Related papers
- Visual Prompt Selection for In-Context Learning Segmentation [77.15684360470152]
In this paper, we focus on rethinking and improving the example selection strategy.
We first demonstrate that ICL-based segmentation models are sensitive to different contexts.
Furthermore, empirical evidence indicates that the diversity of contextual prompts plays a crucial role in guiding segmentation.
arXiv Detail & Related papers (2024-07-14T15:02:54Z) - Understanding Multi-Granularity for Open-Vocabulary Part Segmentation [24.071471822239854]
Open-vocabulary part segmentation (OVPS) is an emerging research area focused on segmenting fine-grained entities using diverse and previously unseen vocabularies.
Our study highlights the inherent complexities of part segmentation due to intricate boundaries and diverse granularity, reflecting the knowledge-based nature of part identification.
We propose PartCLIPSeg, a novel framework utilizing generalized parts and object-level contexts to mitigate the lack of generalization in fine-grained parts.
arXiv Detail & Related papers (2024-06-17T10:11:28Z) - Towards Open-World Segmentation of Parts [16.056921233445784]
We propose to explore a class-agnostic part segmentation task.
We argue that models trained without part classes can better localize parts and segment them on objects unseen in training.
We show notable and consistent gains by our approach, essentially a critical step towards open-world part segmentation.
arXiv Detail & Related papers (2023-05-26T10:34:58Z) - Leveraging GAN Priors for Few-Shot Part Segmentation [43.35150430895919]
Few-shot part segmentation aims to separate different parts of an object given only a few samples.
We propose to learn task-specific features in a "pre-training"-"fine-tuning" paradigm.
arXiv Detail & Related papers (2022-07-27T10:17:07Z) - 3D Compositional Zero-shot Learning with DeCompositional Consensus [102.7571947144639]
We argue that part knowledge should be composable beyond the observed object classes.
We present 3D Compositional Zero-shot Learning as a problem of part generalization from seen to unseen object classes.
arXiv Detail & Related papers (2021-11-29T16:34:53Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples.
Most of advanced solutions exploit a metric learning framework that performs segmentation through matching each pixel to a learned foreground prototype.
This framework suffers from biased classification due to incomplete construction of sample pairs with the foreground prototype only.
arXiv Detail & Related papers (2021-04-19T11:21:47Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z) - Motion-supervised Co-Part Segmentation [88.40393225577088]
We propose a self-supervised deep learning method for co-part segmentation.
Our approach develops the idea that motion information inferred from videos can be leveraged to discover meaningful object parts.
arXiv Detail & Related papers (2020-04-07T09:56:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.