Inducing Causal Structure for Abstractive Text Summarization
- URL: http://arxiv.org/abs/2308.12888v1
- Date: Thu, 24 Aug 2023 16:06:36 GMT
- Title: Inducing Causal Structure for Abstractive Text Summarization
- Authors: Lu Chen, Ruqing Zhang, Wei Huang, Wei Chen, Jiafeng Guo, Xueqi Cheng
- Abstract summary: We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
- Score: 76.1000380429553
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The mainstream of data-driven abstractive summarization models tends to
explore the correlations rather than the causal relationships. Among such
correlations, there can be spurious ones which suffer from the language prior
learned from the training corpus and therefore undermine the overall
effectiveness of the learned model. To tackle this issue, we introduce a
Structural Causal Model (SCM) to induce the underlying causal structure of the
summarization data. We assume several latent causal factors and non-causal
factors, representing the content and style of the document and summary.
Theoretically, we prove that the latent factors in our SCM can be identified by
fitting the observed training data under certain conditions. On the basis of
this, we propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq)
to learn the causal representations that can mimic the causal factors, guiding
us to pursue causal information for summary generation. The key idea is to
reformulate the Variational Auto-encoder (VAE) to fit the joint distribution of
the document and summary variables from the training corpus. Experimental
results on two widely used text summarization datasets demonstrate the
advantages of our approach.
Related papers
- Identifiable Latent Neural Causal Models [82.14087963690561]
Causal representation learning seeks to uncover latent, high-level causal representations from low-level observed data.
We determine the types of distribution shifts that do contribute to the identifiability of causal representations.
We translate our findings into a practical algorithm, allowing for the acquisition of reliable latent causal representations.
arXiv Detail & Related papers (2024-03-23T04:13:55Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
Causal representation learning argues that factors of variation in a dataset are, in fact, causally related.
We propose a fully unsupervised representation learning method that considers a data generation process with a latent additive noise model.
arXiv Detail & Related papers (2023-07-11T18:12:05Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Uncovering Main Causalities for Long-tailed Information Extraction [14.39860866665021]
Long-tailed distributions caused by the selection bias of a dataset may lead to incorrect correlations.
This motivates us to propose counterfactual IE (CFIE), a novel framework that aims to uncover the main causalities behind data.
arXiv Detail & Related papers (2021-09-11T08:08:24Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.