Multivariate Time Series Anomaly Detection: Fancy Algorithms and Flawed
Evaluation Methodology
- URL: http://arxiv.org/abs/2308.13068v2
- Date: Wed, 1 Nov 2023 13:54:01 GMT
- Title: Multivariate Time Series Anomaly Detection: Fancy Algorithms and Flawed
Evaluation Methodology
- Authors: Mohamed El Amine Sehili and Zonghua Zhang
- Abstract summary: We discuss how a normally good protocol may have weaknesses in the context of MVTS anomaly detection.
We propose a simple, yet challenging, baseline based on Principal Components Analysis (PCA) that surprisingly outperforms many recent Deep Learning (DL) based approaches on popular benchmark datasets.
- Score: 2.043517674271996
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multivariate Time Series (MVTS) anomaly detection is a long-standing and
challenging research topic that has attracted tremendous research effort from
both industry and academia recently. However, a careful study of the literature
makes us realize that 1) the community is active but not as organized as other
sibling machine learning communities such as Computer Vision (CV) and Natural
Language Processing (NLP), and 2) most proposed solutions are evaluated using
either inappropriate or highly flawed protocols, with an apparent lack of
scientific foundation. So flawed is one very popular protocol, the so-called
point-adjust protocol, that a random guess can be shown to systematically
outperform all algorithms developed so far. In this paper, we review and
evaluate many recent algorithms using more robust protocols and discuss how a
normally good protocol may have weaknesses in the context of MVTS anomaly
detection and how to mitigate them. We also share our concerns about benchmark
datasets, experiment design and evaluation methodology we observe in many
works. Furthermore, we propose a simple, yet challenging, baseline based on
Principal Components Analysis (PCA) that surprisingly outperforms many recent
Deep Learning (DL) based approaches on popular benchmark datasets. The main
objective of this work is to stimulate more effort towards important aspects of
the research such as data, experiment design, evaluation methodology and result
interpretability, instead of putting the highest weight on the design of
increasingly more complex and "fancier" algorithms.
Related papers
- POGEMA: A Benchmark Platform for Cooperative Multi-Agent Navigation [76.67608003501479]
We introduce and specify an evaluation protocol defining a range of domain-related metrics computed on the basics of the primary evaluation indicators.
The results of such a comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Can Tree Based Approaches Surpass Deep Learning in Anomaly Detection? A
Benchmarking Study [0.6291443816903801]
This paper evaluates a diverse array of machine learning-based anomaly detection algorithms.
The paper contributes significantly by conducting an unbiased comparison of various anomaly detection algorithms.
arXiv Detail & Related papers (2024-02-11T19:12:51Z) - A Critical Re-evaluation of Benchmark Datasets for (Deep) Learning-Based
Matching Algorithms [11.264467955516706]
We propose four approaches to assessing the difficulty and appropriateness of 13 established datasets.
We show that most of the popular datasets pose rather easy classification tasks.
We propose a new methodology for yielding benchmark datasets.
arXiv Detail & Related papers (2023-07-03T07:54:54Z) - NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision
Research [96.53307645791179]
We introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks.
Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth.
Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks.
arXiv Detail & Related papers (2022-11-15T18:57:46Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Frequent Itemset-driven Search for Finding Minimum Node Separators in
Complex Networks [61.2383572324176]
We propose a frequent itemset-driven search approach, which integrates the concept of frequent itemset mining in data mining into the well-known memetic search framework.
It iteratively employs the frequent itemset recombination operator to generate promising offspring solution based on itemsets that frequently occur in high-quality solutions.
In particular, it discovers 29 new upper bounds and matches 18 previous best-known bounds.
arXiv Detail & Related papers (2022-01-18T11:16:40Z) - An Investigation of Replay-based Approaches for Continual Learning [79.0660895390689]
Continual learning (CL) is a major challenge of machine learning (ML) and describes the ability to learn several tasks sequentially without catastrophic forgetting (CF)
Several solution classes have been proposed, of which so-called replay-based approaches seem very promising due to their simplicity and robustness.
We empirically investigate replay-based approaches of continual learning and assess their potential for applications.
arXiv Detail & Related papers (2021-08-15T15:05:02Z) - Unsupervised Learning for Robust Fitting:A Reinforcement Learning
Approach [25.851792661168698]
We introduce a novel framework that learns to solve robust model fitting.
Unlike other methods, our work is agnostic to the underlying input features.
We empirically show that our method outperforms existing learning approaches.
arXiv Detail & Related papers (2021-03-05T07:14:00Z) - DERAIL: Diagnostic Environments for Reward And Imitation Learning [9.099589602551573]
We develop a suite of diagnostic tasks that test individual facets of algorithm performance in isolation.
Results confirm that algorithm performance is highly sensitive to implementation details.
Case-study shows how the suite can pinpoint design flaws and rapidly evaluate candidate solutions.
arXiv Detail & Related papers (2020-12-02T18:07:09Z) - Comparative Analysis of Extreme Verification Latency Learning Algorithms [3.3439097577935213]
This paper is a comprehensive survey and comparative analysis of some of the EVL algorithms to point out the weaknesses and strengths of different approaches.
This work is a very first effort to provide a review of some of the existing algorithms in this field to the research community.
arXiv Detail & Related papers (2020-11-26T16:34:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.