Decoding Natural Images from EEG for Object Recognition
- URL: http://arxiv.org/abs/2308.13234v3
- Date: Thu, 4 Apr 2024 10:08:10 GMT
- Title: Decoding Natural Images from EEG for Object Recognition
- Authors: Yonghao Song, Bingchuan Liu, Xiang Li, Nanlin Shi, Yijun Wang, Xiaorong Gao,
- Abstract summary: This paper presents a self-supervised framework to demonstrate the feasibility of learning image representations from EEG signals.
We achieve a top-1 accuracy of 15.6% and a top-5 accuracy of 42.8% in challenging 200-way zero-shot tasks.
These findings yield valuable insights for neural decoding and brain-computer interfaces in real-world scenarios.
- Score: 8.411976038504589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG) signals, known for convenient non-invasive acquisition but low signal-to-noise ratio, have recently gained substantial attention due to the potential to decode natural images. This paper presents a self-supervised framework to demonstrate the feasibility of learning image representations from EEG signals, particularly for object recognition. The framework utilizes image and EEG encoders to extract features from paired image stimuli and EEG responses. Contrastive learning aligns these two modalities by constraining their similarity. With the framework, we attain significantly above-chance results on a comprehensive EEG-image dataset, achieving a top-1 accuracy of 15.6% and a top-5 accuracy of 42.8% in challenging 200-way zero-shot tasks. Moreover, we perform extensive experiments to explore the biological plausibility by resolving the temporal, spatial, spectral, and semantic aspects of EEG signals. Besides, we introduce attention modules to capture spatial correlations, providing implicit evidence of the brain activity perceived from EEG data. These findings yield valuable insights for neural decoding and brain-computer interfaces in real-world scenarios. The code will be released on https://github.com/eeyhsong/NICE-EEG.
Related papers
- Neuro-3D: Towards 3D Visual Decoding from EEG Signals [49.502364730056044]
We introduce a new neuroscience task: decoding 3D visual perception from EEG signals.
We first present EEG-3D, a dataset featuring multimodal analysis data and EEG recordings from 12 subjects viewing 72 categories of 3D objects rendered in both videos and images.
We propose Neuro-3D, a 3D visual decoding framework based on EEG signals.
arXiv Detail & Related papers (2024-11-19T05:52:17Z) - EEG-ImageNet: An Electroencephalogram Dataset and Benchmarks with Image Visual Stimuli of Multi-Granularity Labels [12.783945503890962]
We introduce EEG-ImageNet, a novel EEG dataset comprising recordings from 16 subjects exposed to 4000 images selected from the ImageNet dataset.
EEG-ImageNet consists of 5 times EEG-image pairs larger than existing similar EEG benchmarks.
Based on it, we establish benchmarks for object classification and image reconstruction. Experiments with several commonly used models show that the best models can achieve object classification with accuracy around 60% and image reconstruction with two-way identification around 64%.
arXiv Detail & Related papers (2024-06-11T10:52:17Z) - Mind's Eye: Image Recognition by EEG via Multimodal Similarity-Keeping Contrastive Learning [2.087148326341881]
This paper introduces a MUltimodal Similarity-keeping contrastivE learning framework for zero-shot EEG-based image classification.
We develop a series of multivariate time-series encoders tailored for EEG signals and assess the efficacy of regularized contrastive EEG-Image pretraining.
Our method achieves state-of-the-art performance, with a top-1 accuracy of 19.3% and a top-5 accuracy of 48.8% in 200-way zero-shot image classification.
arXiv Detail & Related papers (2024-06-05T16:42:23Z) - Learning Robust Deep Visual Representations from EEG Brain Recordings [13.768240137063428]
This study proposes a two-stage method where the first step is to obtain EEG-derived features for robust learning of deep representations.
We demonstrate the generalizability of our feature extraction pipeline across three different datasets using deep-learning architectures.
We propose a novel framework to transform unseen images into the EEG space and reconstruct them with approximation.
arXiv Detail & Related papers (2023-10-25T10:26:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Decoding visual brain representations from electroencephalography
through Knowledge Distillation and latent diffusion models [0.12289361708127873]
We present an innovative method that employs to classify and reconstruct images from the ImageNet dataset using electroencephalography (EEG) data.
We analyzed EEG recordings from 6 participants, each exposed to 50 images spanning 40 unique semantic categories.
We incorporated an image reconstruction mechanism based on pre-trained latent diffusion models, which allowed us to generate an estimate of the images which had elicited EEG activity.
arXiv Detail & Related papers (2023-09-08T09:13:50Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Seeing through the Brain: Image Reconstruction of Visual Perception from
Human Brain Signals [27.92796103924193]
We propose a comprehensive pipeline, named NeuroImagen, for reconstructing visual stimuli images from EEG signals.
We incorporate a novel multi-level perceptual information decoding to draw multi-grained outputs from the given EEG data.
arXiv Detail & Related papers (2023-07-27T12:54:16Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.