Network Embedding Using Sparse Approximations of Random Walks
- URL: http://arxiv.org/abs/2308.13663v1
- Date: Fri, 25 Aug 2023 20:35:45 GMT
- Title: Network Embedding Using Sparse Approximations of Random Walks
- Authors: Paula Mercurio and Di Liu
- Abstract summary: We propose an efficient numerical implementation of Network Embedding based on commute times, using sparse approximation of a diffusion process on the network obtained by a modified version of the diffusion wavelet algorithm.
We demonstrate the efficacy of this method for data clustering and multi-label classification through several examples, and compare its performance over existing methods in terms of efficiency and accuracy.
- Score: 2.676713226382288
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose an efficient numerical implementation of Network
Embedding based on commute times, using sparse approximation of a diffusion
process on the network obtained by a modified version of the diffusion wavelet
algorithm. The node embeddings are computed by optimizing the cross entropy
loss via the stochastic gradient descent method with sampling of
low-dimensional representations of green functions. We demonstrate the efficacy
of this method for data clustering and multi-label classification through
several examples, and compare its performance over existing methods in terms of
efficiency and accuracy. Theoretical issues justifying the scheme are also
discussed.
Related papers
- Improved off-policy training of diffusion samplers [93.66433483772055]
We study the problem of training diffusion models to sample from a distribution with an unnormalized density or energy function.
We benchmark several diffusion-structured inference methods, including simulation-based variational approaches and off-policy methods.
Our results shed light on the relative advantages of existing algorithms while bringing into question some claims from past work.
arXiv Detail & Related papers (2024-02-07T18:51:49Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Implicit Variational Inference for High-Dimensional Posteriors [7.924706533725115]
In variational inference, the benefits of Bayesian models rely on accurately capturing the true posterior distribution.
We propose using neural samplers that specify implicit distributions, which are well-suited for approximating complex multimodal and correlated posteriors.
Our approach introduces novel bounds for approximate inference using implicit distributions by locally linearising the neural sampler.
arXiv Detail & Related papers (2023-10-10T14:06:56Z) - Low-rank extended Kalman filtering for online learning of neural
networks from streaming data [71.97861600347959]
We propose an efficient online approximate Bayesian inference algorithm for estimating the parameters of a nonlinear function from a potentially non-stationary data stream.
The method is based on the extended Kalman filter (EKF), but uses a novel low-rank plus diagonal decomposition of the posterior matrix.
In contrast to methods based on variational inference, our method is fully deterministic, and does not require step-size tuning.
arXiv Detail & Related papers (2023-05-31T03:48:49Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Calibrate and Debias Layer-wise Sampling for Graph Convolutional
Networks [39.56471534442315]
This paper revisits the approach from a matrix approximation perspective.
We propose a new principle for constructing sampling probabilities and an efficient debiasing algorithm.
Improvements are demonstrated by extensive analyses of estimation variance and experiments on common benchmarks.
arXiv Detail & Related papers (2022-06-01T15:52:06Z) - An application of the splitting-up method for the computation of a
neural network representation for the solution for the filtering equations [68.8204255655161]
Filtering equations play a central role in many real-life applications, including numerical weather prediction, finance and engineering.
One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method.
We combine this method with a neural network representation to produce an approximation of the unnormalised conditional distribution of the signal process.
arXiv Detail & Related papers (2022-01-10T11:01:36Z) - Asymptotics of Network Embeddings Learned via Subsampling [4.23373349945751]
We study representation methods using a subsampling approach, such as node2vec, into a single unifying framework.
This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks.
Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
arXiv Detail & Related papers (2021-07-06T02:54:53Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.