Neural Implicit Morphing of Face Images
- URL: http://arxiv.org/abs/2308.13888v4
- Date: Thu, 13 Jun 2024 20:44:18 GMT
- Title: Neural Implicit Morphing of Face Images
- Authors: Guilherme Schardong, Tiago Novello, Hallison Paz, Iurii Medvedev, VinÃcius da Silva, Luiz Velho, Nuno Gonçalves,
- Abstract summary: Face morphing is a problem in computer graphics with numerous artistic and forensic applications.
This task consists of a warping for feature alignment and a blending for a seamless transition between the warped images.
We propose to leverage coord-based neural networks to represent such warpings and blendings of face images.
- Score: 0.7643309077806446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Face morphing is a problem in computer graphics with numerous artistic and forensic applications. It is challenging due to variations in pose, lighting, gender, and ethnicity. This task consists of a warping for feature alignment and a blending for a seamless transition between the warped images. We propose to leverage coord-based neural networks to represent such warpings and blendings of face images. During training, we exploit the smoothness and flexibility of such networks by combining energy functionals employed in classical approaches without discretizations. Additionally, our method is time-dependent, allowing a continuous warping/blending of the images. During morphing inference, we need both direct and inverse transformations of the time-dependent warping. The first (second) is responsible for warping the target (source) image into the source (target) image. Our neural warping stores those maps in a single network dismissing the need for inverting them. The results of our experiments indicate that our method is competitive with both classical and generative models under the lens of image quality and face-morphing detectors. Aesthetically, the resulting images present a seamless blending of diverse faces not yet usual in the literature.
Related papers
- Cross-Image Attention for Zero-Shot Appearance Transfer [68.43651329067393]
We introduce a cross-image attention mechanism that implicitly establishes semantic correspondences across images.
We harness three mechanisms that either manipulate the noisy latent codes or the model's internal representations throughout the denoising process.
Experiments show that our method is effective across a wide range of object categories and is robust to variations in shape, size, and viewpoint.
arXiv Detail & Related papers (2023-11-06T18:33:24Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
StyleGAN-based approaches to face morphing are among the leading techniques.
We propose a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods.
arXiv Detail & Related papers (2023-02-18T19:09:11Z) - Adversarially Perturbed Wavelet-based Morphed Face Generation [16.98806338782858]
Morphed images can fool Facial Recognition Systems into falsely accepting multiple people.
As morphed image synthesis becomes easier, it is vital to expand the research community's available data.
We leverage both methods to generate high-quality adversarially perturbed from the FERET, FRGC, and FRLL datasets.
arXiv Detail & Related papers (2021-11-03T01:18:29Z) - FT-TDR: Frequency-guided Transformer and Top-Down Refinement Network for
Blind Face Inpainting [77.78305705925376]
Blind face inpainting refers to the task of reconstructing visual contents without explicitly indicating the corrupted regions in a face image.
We propose a novel two-stage blind face inpainting method named Frequency-guided Transformer and Top-Down Refinement Network (FT-TDR) to tackle these challenges.
arXiv Detail & Related papers (2021-08-10T03:12:01Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce robust models.
Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training.
arXiv Detail & Related papers (2020-09-18T17:52:34Z) - Neural Crossbreed: Neural Based Image Metamorphosis [11.357156231073862]
We propose a feed-forward neural network that can learn a semantic change of input images in a latent space to create the morphing effect.
Because the network learns a semantic change, a sequence of meaningful intermediate images can be generated without requiring the user to specify explicit correspondences.
arXiv Detail & Related papers (2020-09-02T08:56:47Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.