A Two-Dimensional Deep Network for RF-based Drone Detection and
Identification Towards Secure Coverage Extension
- URL: http://arxiv.org/abs/2308.13906v1
- Date: Sat, 26 Aug 2023 15:43:39 GMT
- Title: A Two-Dimensional Deep Network for RF-based Drone Detection and
Identification Towards Secure Coverage Extension
- Authors: Zixiao Zhao, Qinghe Du, Xiang Yao, Lei Lu, and Shijiao Zhang
- Abstract summary: We use Short-Time Fourier Transform to extract two-dimensional features from the raw signals, which contain both time-domain and frequency-domain information.
Then, we employ a Convolutional Neural Network (CNN) built with ResNet structure to achieve multi-class classifications.
Our experimental results show that the proposed ResNet-STFT can achieve higher accuracy and faster convergence on the extended dataset.
- Score: 7.717171534776764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As drones become increasingly prevalent in human life, they also raises
security concerns such as unauthorized access and control, as well as
collisions and interference with manned aircraft. Therefore, ensuring the
ability to accurately detect and identify between different drones holds
significant implications for coverage extension. Assisted by machine learning,
radio frequency (RF) detection can recognize the type and flight mode of drones
based on the sampled drone signals. In this paper, we first utilize Short-Time
Fourier. Transform (STFT) to extract two-dimensional features from the raw
signals, which contain both time-domain and frequency-domain information. Then,
we employ a Convolutional Neural Network (CNN) built with ResNet structure to
achieve multi-class classifications. Our experimental results show that the
proposed ResNet-STFT can achieve higher accuracy and faster convergence on the
extended dataset. Additionally, it exhibits balanced performance compared to
other baselines on the raw dataset.
Related papers
- Robust Low-Cost Drone Detection and Classification in Low SNR Environments [0.9087641068861043]
We evaluate various convolutional neural networks (CNNs) for their ability to detect and classify drones.
We demonstrate a low-cost drone detection system using a standard computer, software-defined radio (SDR) and antenna.
arXiv Detail & Related papers (2024-06-26T12:50:55Z) - C2FDrone: Coarse-to-Fine Drone-to-Drone Detection using Vision Transformer Networks [23.133250476580038]
A vision-based drone-to-drone detection system is crucial for various applications like collision avoidance, countering hostile drones, and search-and-rescue operations.
detecting drones presents unique challenges, including small object sizes, distortion, and real-time processing requirements.
We propose a novel coarse-to-fine detection strategy based on vision transformers.
arXiv Detail & Related papers (2024-04-30T05:51:21Z) - Multi-Stage Fusion Architecture for Small-Drone Localization and Identification Using Passive RF and EO Imagery: A Case Study [0.1872664641238533]
This work develops a multi-stage fusion architecture using passive radio frequency (RF) and electro-optic (EO) imagery data.
Supervised deep learning based techniques and unsupervised foreground/background separation techniques are explored to cope with challenging environments.
The proposed fusion architecture is tested and the tracking and performance is quantified over the range.
arXiv Detail & Related papers (2024-03-30T22:53:28Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - DT-DDNN: A Physical Layer Security Attack Detector in 5G RF Domain for
CAVs [11.15939066175832]
jamming attacks pose substantial risks to the 5G network.
This work presents a novel deep learning-based technique for detecting jammers in CAV networks.
Results show that the proposed method achieves 96.4% detection rate in extra low jamming power.
arXiv Detail & Related papers (2024-03-05T04:29:31Z) - YOLO-Ant: A Lightweight Detector via Depthwise Separable Convolutional
and Large Kernel Design for Antenna Interference Source Detection [8.184096371244175]
We introduce YOLO-Ant, a lightweight CNN and transformer hybrid detector for antenna interference source detection.
We propose a DSLK-Block module based on depthwise separable convolution and large convolution kernels to enhance the network's feature extraction ability.
To address challenges such as complex backgrounds and large interclass differences in antenna detection, we construct DSLKVit-Block.
arXiv Detail & Related papers (2024-02-20T01:35:23Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
A swarm of intelligent wireless devices train a shared neural network model with the help of a drone.
The proposed framework achieves a significant speedup in training, leading to an average 24% and 87% saving in the drone hovering time.
arXiv Detail & Related papers (2023-03-03T23:46:25Z) - Deep Learning-Based Synchronization for Uplink NB-IoT [72.86843435313048]
We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT)
The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications.
arXiv Detail & Related papers (2022-05-22T12:16:43Z) - Integral Migrating Pre-trained Transformer Encoder-decoders for Visual
Object Detection [78.2325219839805]
imTED improves the state-of-the-art of few-shot object detection by up to 7.6% AP.
Experiments on MS COCO dataset demonstrate that imTED consistently outperforms its counterparts by 2.8%.
arXiv Detail & Related papers (2022-05-19T15:11:20Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - From One to Many: A Deep Learning Coincident Gravitational-Wave Search [58.720142291102135]
We construct a two-detector search for gravitational waves from binary black hole mergers using neural networks trained on non-spinning binary black hole data from a single detector.
We find that none of these simple two-detector networks are capable of improving the sensitivity over applying networks individually to the data from the detectors.
arXiv Detail & Related papers (2021-08-24T13:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.