Situated Natural Language Explanations
- URL: http://arxiv.org/abs/2308.14115v2
- Date: Mon, 25 Mar 2024 03:54:48 GMT
- Title: Situated Natural Language Explanations
- Authors: Zining Zhu, Haoming Jiang, Jingfeng Yang, Sreyashi Nag, Chao Zhang, Jie Huang, Yifan Gao, Frank Rudzicz, Bing Yin,
- Abstract summary: Natural language explanations (NLEs) are among the most accessible tools for explaining decisions to humans.
Existing NLE research perspectives do not take the audience into account.
Situated NLE provides a perspective and facilitates further research on the generation and evaluation of explanations.
- Score: 54.083715161895036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural language is among the most accessible tools for explaining decisions to humans, and large pretrained language models (PLMs) have demonstrated impressive abilities to generate coherent natural language explanations (NLE). The existing NLE research perspectives do not take the audience into account. An NLE can have high textual quality, but it might not accommodate audiences' needs and preference. To address this limitation, we propose an alternative perspective, \textit{situated} NLE. On the evaluation side, we set up automated evaluation scores. These scores describe the properties of NLEs in lexical, semantic, and pragmatic categories. On the generation side, we identify three prompt engineering techniques and assess their applicability on the situations. Situated NLE provides a perspective and facilitates further research on the generation and evaluation of explanations.
Related papers
- Scenarios and Approaches for Situated Natural Language Explanations [18.022428746019582]
We collect a benchmarking dataset, Situation-Based Explanation.
This dataset contains 100 explanandums.
For each "explanandum paired with an audience" situation, we include a human-written explanation.
We examine three categories of prompting methods: rule-based prompting, meta-prompting, and in-context learning prompting.
arXiv Detail & Related papers (2024-06-07T15:56:32Z) - Bayesian Preference Elicitation with Language Models [82.58230273253939]
We introduce OPEN, a framework that uses BOED to guide the choice of informative questions and an LM to extract features.
In user studies, we find that OPEN outperforms existing LM- and BOED-based methods for preference elicitation.
arXiv Detail & Related papers (2024-03-08T18:57:52Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
State-of-the-art natural language processing (NLP) models are trained on massive training corpora, and report a superlative performance on evaluation datasets.
This survey delves into an important attribute of these datasets: the dialect of a language.
Motivated by the performance degradation of NLP models for dialectic datasets and its implications for the equity of language technologies, we survey past research in NLP for dialects in terms of datasets, and approaches.
arXiv Detail & Related papers (2024-01-11T03:04:38Z) - Towards LLM-guided Causal Explainability for Black-box Text Classifiers [16.36602400590088]
We aim to leverage the instruction-following and textual understanding capabilities of recent Large Language Models to facilitate causal explainability.
We propose a three-step pipeline via which, we use an off-the-shelf LLM to identify the latent or unobserved features in the input text.
We experiment with our pipeline on multiple NLP text classification datasets, and present interesting and promising findings.
arXiv Detail & Related papers (2023-09-23T11:22:28Z) - Faithfulness Tests for Natural Language Explanations [87.01093277918599]
Explanations of neural models aim to reveal a model's decision-making process for its predictions.
Recent work shows that current methods giving explanations such as saliency maps or counterfactuals can be misleading.
This work explores the challenging question of evaluating the faithfulness of natural language explanations.
arXiv Detail & Related papers (2023-05-29T11:40:37Z) - A Survey of Knowledge Enhanced Pre-trained Language Models [78.56931125512295]
We present a comprehensive review of Knowledge Enhanced Pre-trained Language Models (KE-PLMs)
For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG) and rule knowledge.
The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods.
arXiv Detail & Related papers (2022-11-11T04:29:02Z) - Chain of Explanation: New Prompting Method to Generate Higher Quality
Natural Language Explanation for Implicit Hate Speech [8.761064812847078]
We propose the Chain of Explanation Prompting method, inspired by the chain of thoughts study citewei2022chain, to generate high-quality NLE for implicit hate speech.
We build a benchmark based on the selected mainstream Pre-trained Language Models (PLMs), with various evaluation metrics from lexical, semantic, and faithful aspects.
To further evaluate the quality of the generated NLE from human perceptions, we hire human annotators to score the informativeness and clarity of the generated NLE.
arXiv Detail & Related papers (2022-09-11T15:04:11Z) - e-ViL: A Dataset and Benchmark for Natural Language Explanations in
Vision-Language Tasks [52.918087305406296]
We introduce e-ViL, a benchmark for evaluate explainable vision-language tasks.
We also introduce e-SNLI-VE, the largest existing dataset with NLEs.
We propose a new model that combines UNITER, which learns joint embeddings of images and text, and GPT-2, a pre-trained language model.
arXiv Detail & Related papers (2021-05-08T18:46:33Z) - NILE : Natural Language Inference with Faithful Natural Language
Explanations [10.074153632701952]
We propose Natural-language Inference over Label-specific Explanations (NILE)
NILE is a novel NLI method which utilizes auto-generated label-specific explanations to produce labels along with its faithful explanation.
We discuss the faithfulness of NILE's explanations in terms of sensitivity of the decisions to the corresponding explanations.
arXiv Detail & Related papers (2020-05-25T13:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.