Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
- URL: http://arxiv.org/abs/2308.14142v2
- Date: Fri, 12 Apr 2024 14:31:51 GMT
- Title: Integrated Variational Fourier Features for Fast Spatial Modelling with Gaussian Processes
- Authors: Talay M Cheema, Carl Edward Rasmussen,
- Abstract summary: For $N$ training points, exact inference has $O(N3)$ cost; with $M ll N$ features, state of the art sparse variational methods have $O(NM2)$ cost.
Recently, methods have been proposed using more sophisticated features; these promise $O(M3)$ cost, with good performance in low dimensional tasks such as spatial modelling, but they only work with a very limited class of kernels, excluding some of the most commonly used.
In this work, we propose integrated Fourier features, which extends these performance benefits to a very broad class of stationary co
- Score: 7.5991638205413325
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse variational approximations are popular methods for scaling up inference and learning in Gaussian processes to larger datasets. For $N$ training points, exact inference has $O(N^3)$ cost; with $M \ll N$ features, state of the art sparse variational methods have $O(NM^2)$ cost. Recently, methods have been proposed using more sophisticated features; these promise $O(M^3)$ cost, with good performance in low dimensional tasks such as spatial modelling, but they only work with a very limited class of kernels, excluding some of the most commonly used. In this work, we propose integrated Fourier features, which extends these performance benefits to a very broad class of stationary covariance functions. We motivate the method and choice of parameters from a convergence analysis and empirical exploration, and show practical speedup in synthetic and real world spatial regression tasks.
Related papers
- Learning High-Dimensional Nonparametric Differential Equations via
Multivariate Occupation Kernel Functions [0.31317409221921133]
Learning a nonparametric system of ordinary differential equations requires learning $d$ functions of $d$ variables.
Explicit formulations scale quadratically in $d$ unless additional knowledge about system properties, such as sparsity and symmetries, is available.
We propose a linear approach to learning using the implicit formulation provided by vector-valued Reproducing Kernel Hilbert Spaces.
arXiv Detail & Related papers (2023-06-16T21:49:36Z) - On Convergence of Incremental Gradient for Non-Convex Smooth Functions [63.51187646914962]
In machine learning and network optimization, algorithms like shuffle SGD are popular due to minimizing the number of misses and good cache.
This paper delves into the convergence properties SGD algorithms with arbitrary data ordering.
arXiv Detail & Related papers (2023-05-30T17:47:27Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Manifold Free Riemannian Optimization [4.484251538832438]
A principled framework for solving optimization problems with a smooth manifold $mathcalM$ is proposed.
We use a noiseless sample set of the cost function $(x_i, y_i)in mathcalM times mathbbR$ and the intrinsic dimension of the manifold $mathcalM$.
arXiv Detail & Related papers (2022-09-07T16:19:06Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Sharper Rates and Flexible Framework for Nonconvex SGD with Client and
Data Sampling [64.31011847952006]
We revisit the problem of finding an approximately stationary point of the average of $n$ smooth and possibly non-color functions.
We generalize the $smallsfcolorgreen$ so that it can provably work with virtually any sampling mechanism.
We provide the most general and most accurate analysis of optimal bound in the smooth non-color regime.
arXiv Detail & Related papers (2022-06-05T21:32:33Z) - Improved Convergence Rates for Sparse Approximation Methods in
Kernel-Based Learning [48.08663378234329]
Kernel-based models such as kernel ridge regression and Gaussian processes are ubiquitous in machine learning applications.
Existing sparse approximation methods can yield a significant reduction in the computational cost.
We provide novel confidence intervals for the Nystr"om method and the sparse variational Gaussian processes approximation method.
arXiv Detail & Related papers (2022-02-08T17:22:09Z) - Learning to extrapolate using continued fractions: Predicting the
critical temperature of superconductor materials [5.905364646955811]
In the field of Artificial Intelligence (AI) and Machine Learning (ML), the approximation of unknown target functions $y=f(mathbfx)$ is a common objective.
We refer to $S$ as the training set and aim to identify a low-complexity mathematical model that can effectively approximate this target function for new instances $mathbfx$.
arXiv Detail & Related papers (2020-11-27T04:57:40Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
We study the exploration-exploitation tradeoff at the core of reinforcement learning.
In particular, we prove that the complexity of the function class $mathcalF$ characterizes the complexity of the function.
Our regret bounds are independent of the number of episodes.
arXiv Detail & Related papers (2020-11-09T18:32:22Z) - $\pi$VAE: a stochastic process prior for Bayesian deep learning with
MCMC [2.4792948967354236]
We propose a novel variational autoencoder called the prior encodingal autoencoder ($pi$VAE)
We show that our framework can accurately learn expressive function classes such as Gaussian processes, but also properties of functions to enable statistical inference.
Perhaps most usefully, we demonstrate that the low dimensional distributed latent space representation learnt provides an elegant and scalable means of performing inference for processes within programming languages such as Stan.
arXiv Detail & Related papers (2020-02-17T10:23:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.