Breaking Boundaries: Distributed Domain Decomposition with Scalable
Physics-Informed Neural PDE Solvers
- URL: http://arxiv.org/abs/2308.14258v1
- Date: Mon, 28 Aug 2023 02:25:11 GMT
- Title: Breaking Boundaries: Distributed Domain Decomposition with Scalable
Physics-Informed Neural PDE Solvers
- Authors: Arthur Feeney, Zitong Li, Ramin Bostanabad, Aparna Chandramowlishwaran
- Abstract summary: We present an end-to-end parallelization of Mosaic Flow, combining data parallel training and domain parallelism for inference on large-scale problems.
Our distributed domain decomposition algorithm enables scalable inferences for solving the Laplace equation on domains 4096 times larger than the training domain.
- Score: 3.826644006708634
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mosaic Flow is a novel domain decomposition method designed to scale
physics-informed neural PDE solvers to large domains. Its unique approach
leverages pre-trained networks on small domains to solve partial differential
equations on large domains purely through inference, resulting in high
reusability. This paper presents an end-to-end parallelization of Mosaic Flow,
combining data parallel training and domain parallelism for inference on
large-scale problems. By optimizing the network architecture and data parallel
training, we significantly reduce the training time for learning the Laplacian
operator to minutes on 32 GPUs. Moreover, our distributed domain decomposition
algorithm enables scalable inferences for solving the Laplace equation on
domains 4096 times larger than the training domain, demonstrating strong
scaling while maintaining accuracy on 32 GPUs. The reusability of Mosaic Flow,
combined with the improved performance achieved through the distributed-memory
algorithms, makes it a promising tool for modeling complex physical phenomena
and accelerating scientific discovery.
Related papers
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
We propose a domain-decomposition-based deep learning (DL) framework, named CoMLSim, for accurately modeling unsteady and nonlinear partial differential equations (PDEs)
The framework consists of two key components: (a) a convolutional neural network (CNN)-based autoencoder architecture and (b) an autoregressive model composed of fully connected layers.
arXiv Detail & Related papers (2024-08-26T17:50:47Z) - Multi-Grid Tensorized Fourier Neural Operator for High-Resolution PDEs [93.82811501035569]
We introduce a new data efficient and highly parallelizable operator learning approach with reduced memory requirement and better generalization.
MG-TFNO scales to large resolutions by leveraging local and global structures of full-scale, real-world phenomena.
We demonstrate superior performance on the turbulent Navier-Stokes equations where we achieve less than half the error with over 150x compression.
arXiv Detail & Related papers (2023-09-29T20:18:52Z) - MAgNet: Mesh Agnostic Neural PDE Solver [68.8204255655161]
Climate predictions require fine-temporal resolutions to resolve all turbulent scales in the fluid simulations.
Current numerical model solveers PDEs on grids that are too coarse (3km to 200km on each side)
We design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query.
arXiv Detail & Related papers (2022-10-11T14:52:20Z) - An AI-based Domain-Decomposition Non-Intrusive Reduced-Order Model for
Extended Domains applied to Multiphase Flow in Pipes [0.0]
We present a new AI-based non-intrusive reduced-order model within a domain decomposition framework.
It is capable of making predictions for domains significantly larger than the domain used in training.
The framework is applied to multiphase slug flow in a horizontal pipe for which an AI-DDNIROM is trained on high-fidelity CFD simulations.
arXiv Detail & Related papers (2022-02-13T00:32:17Z) - Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models [0.20999222360659606]
This paper introduces a transferable framework for solving boundary value problems (BVPs) via deep neural networks.
First, we introduce emphgenomic flow network (GFNet), a neural network that can infer the solution of a BVP across arbitrary boundary conditions.
Then, we propose emphmosaic flow (MF) predictor, a novel iterative algorithm that assembles or stitches the GFNet's inferences.
arXiv Detail & Related papers (2021-04-22T05:20:27Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
In this work, we make use of deep residual neural networks to solve the non-stationary ODE (flow equation) based on a Euler's discretization scheme.
We illustrate these ideas on diverse registration problems of 3D shapes under complex topology-preserving transformations.
arXiv Detail & Related papers (2021-02-16T04:07:13Z) - Multi-Scale Neural Networks for to Fluid Flow in 3D Porous Media [0.0]
We develop a general multiscale deep learning model that is able to learn from porous media simulation data.
We enable the evaluation of large images in approximately one second on a single Graphics Processing Unit.
arXiv Detail & Related papers (2021-02-10T23:38:36Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
We develop a hybrid (graph) neural network that combines a traditional graph convolutional network with an embedded differentiable fluid dynamics simulator inside the network itself.
We show that we can both generalize well to new situations and benefit from the substantial speedup of neural network CFD predictions.
arXiv Detail & Related papers (2020-07-08T21:23:19Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Self-Directed Online Machine Learning for Topology Optimization [58.920693413667216]
Self-directed Online Learning Optimization integrates Deep Neural Network (DNN) with Finite Element Method (FEM) calculations.
Our algorithm was tested by four types of problems including compliance minimization, fluid-structure optimization, heat transfer enhancement and truss optimization.
It reduced the computational time by 2 5 orders of magnitude compared with directly using methods, and outperformed all state-of-the-art algorithms tested in our experiments.
arXiv Detail & Related papers (2020-02-04T20:00:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.