Solving Attention Kernel Regression Problem via Pre-conditioner
- URL: http://arxiv.org/abs/2308.14304v2
- Date: Mon, 1 Apr 2024 22:30:22 GMT
- Title: Solving Attention Kernel Regression Problem via Pre-conditioner
- Authors: Zhao Song, Junze Yin, Lichen Zhang,
- Abstract summary: We design algorithms for two types of regression problems: $min_xin mathbbRd|(Atop A)jx-b|$ for any positive integer $j$.
The second proxy is applying exponential entrywise to the Gram matrix, denoted by $exp(AAtop)$ and solving the regression $min_xin mathbbRn|exp(AAtop)xb |$.
- Score: 9.131385887605935
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The attention mechanism is the key to large language models, and the attention matrix serves as an algorithmic and computational bottleneck for such a scheme. In this paper, we define two problems, motivated by designing fast algorithms for proxy of attention matrix and solving regressions against them. Given an input matrix $A\in \mathbb{R}^{n\times d}$ with $n\gg d$ and a response vector $b$, we first consider the matrix exponential of the matrix $A^\top A$ as a proxy, and we in turn design algorithms for two types of regression problems: $\min_{x\in \mathbb{R}^d}\|(A^\top A)^jx-b\|_2$ and $\min_{x\in \mathbb{R}^d}\|A(A^\top A)^jx-b\|_2$ for any positive integer $j$. Studying algorithms for these regressions is essential, as matrix exponential can be approximated term-by-term via these smaller problems. The second proxy is applying exponential entrywise to the Gram matrix, denoted by $\exp(AA^\top)$ and solving the regression $\min_{x\in \mathbb{R}^n}\|\exp(AA^\top)x-b \|_2$. We call this problem the attention kernel regression problem, as the matrix $\exp(AA^\top)$ could be viewed as a kernel function with respect to $A$. We design fast algorithms for these regression problems, based on sketching and preconditioning. We hope these efforts will provide an alternative perspective of studying efficient approximation of attention matrices.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - How to Inverting the Leverage Score Distribution? [16.744561210470632]
Despite leverage scores being widely used as a tool, in this paper, we study a novel problem, namely the inverting leverage score.
We use iterative shrinking and the induction hypothesis to ensure global convergence rates for the Newton method.
This important study on inverting statistical leverage opens up numerous new applications in interpretation, data recovery, and security.
arXiv Detail & Related papers (2024-04-21T21:36:42Z) - Provably learning a multi-head attention layer [55.2904547651831]
Multi-head attention layer is one of the key components of the transformer architecture that sets it apart from traditional feed-forward models.
In this work, we initiate the study of provably learning a multi-head attention layer from random examples.
We prove computational lower bounds showing that in the worst case, exponential dependence on $m$ is unavoidable.
arXiv Detail & Related papers (2024-02-06T15:39:09Z) - Structured Semidefinite Programming for Recovering Structured
Preconditioners [41.28701750733703]
We give an algorithm which, given positive definite $mathbfK in mathbbRd times d$ with $mathrmnnz(mathbfK)$ nonzero entries, computes an $epsilon$-optimal diagonal preconditioner in time.
We attain our results via new algorithms for a class of semidefinite programs we call matrix-dictionary approximation SDPs.
arXiv Detail & Related papers (2023-10-27T16:54:29Z) - One-sided Matrix Completion from Two Observations Per Row [95.87811229292056]
We propose a natural algorithm that involves imputing the missing values of the matrix $XTX$.
We evaluate our algorithm on one-sided recovery of synthetic data and low-coverage genome sequencing.
arXiv Detail & Related papers (2023-06-06T22:35:16Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Solving Regularized Exp, Cosh and Sinh Regression Problems [40.47799094316649]
attention computation is a fundamental task for large language models such as Transformer, GPT-4 and ChatGPT.
The straightforward method is to use the naive Newton's method.
arXiv Detail & Related papers (2023-03-28T04:26:51Z) - A General Algorithm for Solving Rank-one Matrix Sensing [15.543065204102714]
The goal of matrix sensing is to recover a matrix $A_star in mathbbRn times n$, based on a sequence of measurements.
In this paper, we relax that rank-$k$ assumption and solve a much more general matrix sensing problem.
arXiv Detail & Related papers (2023-03-22T04:07:26Z) - A Nearly-Optimal Bound for Fast Regression with $\ell_\infty$ Guarantee [16.409210914237086]
Given a matrix $Ain mathbbRntimes d$ and a tensor $bin mathbbRn$, we consider the regression problem with $ell_infty$ guarantees.
We show that in order to obtain such $ell_infty$ guarantee for $ell$ regression, one has to use sketching matrices that are dense.
We also develop a novel analytical framework for $ell_infty$ guarantee regression that utilizes the Oblivious Coordinate-wise Embedding (OCE) property
arXiv Detail & Related papers (2023-02-01T05:22:40Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
We consider the problem of learning a latent $k$-vertex simplex $KsubsetmathbbRdtimes n$, given access to $AinmathbbRdtimes n$.
We show that the dependence on $k$ in the running time is unnecessary given a natural assumption about the mass of the top $k$ singular values of $A$.
arXiv Detail & Related papers (2021-05-17T16:40:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.