Reinforcement Learning for Generative AI: A Survey
- URL: http://arxiv.org/abs/2308.14328v2
- Date: Tue, 29 Aug 2023 01:58:02 GMT
- Title: Reinforcement Learning for Generative AI: A Survey
- Authors: Yuanjiang Cao and Quan Z. Sheng and Julian McAuley and Lina Yao
- Abstract summary: This survey aims to shed light on a high-level review that spans a range of application areas.
We provide a rigorous taxonomy in this area and make sufficient coverage on various models and applications.
We conclude this survey by showing the potential directions that might tackle the limit of current models and expand the frontiers for generative AI.
- Score: 40.21640713844257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Generative AI has been a long-standing essential topic in the machine
learning community, which can impact a number of application areas like text
generation and computer vision. The major paradigm to train a generative model
is maximum likelihood estimation, which pushes the learner to capture and
approximate the target data distribution by decreasing the divergence between
the model distribution and the target distribution. This formulation
successfully establishes the objective of generative tasks, while it is
incapable of satisfying all the requirements that a user might expect from a
generative model. Reinforcement learning, serving as a competitive option to
inject new training signals by creating new objectives that exploit novel
signals, has demonstrated its power and flexibility to incorporate human
inductive bias from multiple angles, such as adversarial learning,
hand-designed rules and learned reward model to build a performant model.
Thereby, reinforcement learning has become a trending research field and has
stretched the limits of generative AI in both model design and application. It
is reasonable to summarize and conclude advances in recent years with a
comprehensive review. Although there are surveys in different application areas
recently, this survey aims to shed light on a high-level review that spans a
range of application areas. We provide a rigorous taxonomy in this area and
make sufficient coverage on various models and applications. Notably, we also
surveyed the fast-developing large language model area. We conclude this survey
by showing the potential directions that might tackle the limit of current
models and expand the frontiers for generative AI.
Related papers
- Transfer Learning with Foundational Models for Time Series Forecasting using Low-Rank Adaptations [0.0]
This study proposes LLIAM, the Llama Lora-Integrated Autorregresive Model.
Low-Rank Adaptations are used to enhance the knowledge of the model with diverse time series datasets, known as the fine-tuning phase.
arXiv Detail & Related papers (2024-10-15T12:14:01Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
We argue that current large-scale generative AI models do not sufficiently address several fundamental issues that hinder their widespread adoption across domains.
In this work, we aim to identify key unresolved challenges in modern generative AI paradigms that should be tackled to further enhance their capabilities, versatility, and reliability.
arXiv Detail & Related papers (2024-02-28T15:19:33Z) - On the Resurgence of Recurrent Models for Long Sequences -- Survey and
Research Opportunities in the Transformer Era [59.279784235147254]
This survey is aimed at providing an overview of these trends framed under the unifying umbrella of Recurrence.
It emphasizes novel research opportunities that become prominent when abandoning the idea of processing long sequences.
arXiv Detail & Related papers (2024-02-12T23:55:55Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
Generative AI, Computer Vision, and Natural Language Processing have led to an increased integration of AI models into various products.
This survey aims to summarize and categorize the emerging challenges and optimization opportunities for large-scale deep learning serving systems.
arXiv Detail & Related papers (2023-11-22T18:46:05Z) - A Comprehensive Review of Trends, Applications and Challenges In
Out-of-Distribution Detection [0.76146285961466]
Field of study has emerged, focusing on detecting out-of-distribution data subsets and enabling a more comprehensive generalization.
As many deep learning based models have achieved near-perfect results on benchmark datasets, the need to evaluate these models' reliability and trustworthiness is felt more strongly than ever.
This paper presents a survey that, in addition to reviewing more than 70 papers in this field, presents challenges and directions for future works and offers a unifying look into various types of data shifts and solutions for better generalization.
arXiv Detail & Related papers (2022-09-26T18:13:14Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
One of the fundamental challenges in using a learned forward dynamics model is the mismatch between the objective of the learned model and that of the downstream planner or policy.
We propose to direct prediction towards task relevant information, enabling the model to be aware of the current task and encouraging it to only model relevant quantities of the state space.
We find that our method more effectively models the relevant parts of the scene conditioned on the goal, and as a result outperforms standard task-agnostic dynamics models and model-free reinforcement learning.
arXiv Detail & Related papers (2020-07-14T16:42:59Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.