MetaWeather: Few-Shot Weather-Degraded Image Restoration
- URL: http://arxiv.org/abs/2308.14334v4
- Date: Fri, 12 Jul 2024 06:19:52 GMT
- Title: MetaWeather: Few-Shot Weather-Degraded Image Restoration
- Authors: Youngrae Kim, Younggeol Cho, Thanh-Tung Nguyen, Seunghoon Hong, Dongman Lee,
- Abstract summary: We introduce MetaWeather, a universal approach that can handle diverse and novel weather conditions with a single unified model.
We show that MetaWeather can adapt to unseen weather conditions, significantly outperforming state-of-the-art multi-weather image restoration methods.
- Score: 17.63266150036311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world weather conditions are intricate and often occur concurrently. However, most existing restoration approaches are limited in their applicability to specific weather conditions in training data and struggle to generalize to unseen weather types, including real-world weather conditions. To address this issue, we introduce MetaWeather, a universal approach that can handle diverse and novel weather conditions with a single unified model. Extending a powerful meta-learning framework, MetaWeather formulates the task of weather-degraded image restoration as a few-shot adaptation problem that predicts the degradation pattern of a query image, and learns to adapt to unseen weather conditions through a novel spatial-channel matching algorithm. Experimental results on the BID Task II.A, SPA-Data, and RealSnow datasets demonstrate that the proposed method can adapt to unseen weather conditions, significantly outperforming the state-of-the-art multi-weather image restoration methods.
Related papers
- Multiple weather images restoration using the task transformer and adaptive mixup strategy [14.986500375481546]
We introduce a novel multi-task severe weather removal model that can effectively handle complex weather conditions in an adaptive manner.
Our model incorporates a weather task sequence generator, enabling the self-attention mechanism to selectively focus on features specific to different weather types.
Our proposed model has achieved state-of-the-art performance on the publicly available dataset.
arXiv Detail & Related papers (2024-09-05T04:55:40Z) - Boosting Adverse Weather Crowd Counting via Multi-queue Contrastive Learning [8.692139673789555]
We propose a two-stage crowd counting method to enhance the model's robustness in adverse weather.
In the first stage, we introduce a multi-queue MoCo contrastive learning strategy to tackle the problem of weather class imbalance.
In the second stage, we propose to refine the representations under the guidance of contrastive learning, enabling the conversion of the weather-aware representations to the normal weather domain.
arXiv Detail & Related papers (2024-08-12T07:13:08Z) - Modeling Weather Uncertainty for Multi-weather Co-Presence Estimation [25.060597623607784]
existing algorithms model weather condition as a discrete status and estimate it using multi-label classification.
We consider the physical formulation of multi-weather conditions and model the impact of physical-related parameter on learning from the image appearance.
arXiv Detail & Related papers (2024-03-29T10:05:29Z) - Genuine Knowledge from Practice: Diffusion Test-Time Adaptation for
Video Adverse Weather Removal [53.15046196592023]
We introduce test-time adaptation into adverse weather removal in videos.
We propose the first framework that integrates test-time adaptation into the iterative diffusion reverse process.
arXiv Detail & Related papers (2024-03-12T14:21:30Z) - Continual All-in-One Adverse Weather Removal with Knowledge Replay on a
Unified Network Structure [92.8834309803903]
In real-world applications, image degeneration caused by adverse weather is always complex and changes with different weather conditions from days and seasons.
We develop a novel continual learning framework with effective knowledge replay (KR) on a unified network structure.
It considers the characteristics of the image restoration task with multiple degenerations in continual learning, and the knowledge for different degenerations can be shared and accumulated.
arXiv Detail & Related papers (2024-03-12T03:50:57Z) - Always Clear Days: Degradation Type and Severity Aware All-In-One
Adverse Weather Removal [8.58670633761819]
All-in-one adverse weather removal is an emerging topic on image restoration, which aims to restore multiple weather degradations in an unified model.
We propose a degradation type and severity aware model, called UtilityIR, for blind all-in-one bad weather image restoration.
arXiv Detail & Related papers (2023-10-27T17:29:55Z) - Exploring the Application of Large-scale Pre-trained Models on Adverse
Weather Removal [97.53040662243768]
We propose a CLIP embedding module to make the network handle different weather conditions adaptively.
This module integrates the sample specific weather prior extracted by CLIP image encoder together with the distribution specific information learned by a set of parameters.
arXiv Detail & Related papers (2023-06-15T10:06:13Z) - Counting Crowds in Bad Weather [68.50690406143173]
We propose a method for robust crowd counting in adverse weather scenarios.
Our model learns effective features and adaptive queries to account for large appearance variations.
Experimental results show that the proposed algorithm is effective in counting crowds under different weather types on benchmark datasets.
arXiv Detail & Related papers (2023-06-02T00:00:09Z) - Thermal to Visible Image Synthesis under Atmospheric Turbulence [67.99407460140263]
In biometrics and surveillance, thermal imagining modalities are often used to capture images in low-light and nighttime conditions.
Such imaging systems often suffer from atmospheric turbulence, which introduces severe blur and deformation artifacts to the captured images.
An end-to-end reconstruction method is proposed which can directly transform thermal images into visible-spectrum images.
arXiv Detail & Related papers (2022-04-06T19:47:41Z) - TransWeather: Transformer-based Restoration of Images Degraded by
Adverse Weather Conditions [77.20136060506906]
We propose TransWeather, a transformer-based end-to-end model with just a single encoder and a decoder.
TransWeather achieves significant improvements across multiple test datasets over both All-in-One network.
It is validated on real world test images and found to be more effective than previous methods.
arXiv Detail & Related papers (2021-11-29T18:57:09Z) - Smart Weather Forecasting Using Machine Learning:A Case Study in
Tennessee [2.9477900773805032]
We present a weather prediction technique that utilizes historical data from multiple weather stations to train simple machine learning models.
The accuracy of the models is good enough to be used alongside the current state-of-the-art techniques.
arXiv Detail & Related papers (2020-08-25T02:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.