Passive microwave circulation on a superconducting chip
- URL: http://arxiv.org/abs/2308.14643v1
- Date: Mon, 28 Aug 2023 15:16:29 GMT
- Title: Passive microwave circulation on a superconducting chip
- Authors: Arkady Fedorov, N. Pradeep Kumar, Dat Thanh Le, Rohit Navarathna,
Prasanna Pakkiam, Thomas M. Stace
- Abstract summary: We report the realisation of a passive on-chip circulator which is made from a loop consisting of three tunnel-coupled superconducting islands, with DC-only control fields.
When tuned for circulation, the device exhibits strongly non-reciprocal 3-port scattering, with average on-resonance insertion loss of 2 dB, isolation of 14 dB, power reflectance of -11 dB, and a bandwidth of 200 MHz.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Building large-scale superconducting quantum circuits will require
miniaturisation and integration of supporting devices including microwave
circulators, which are currently bulky, stand-alone components. Here we report
the realisation of a passive on-chip circulator which is made from a loop
consisting of three tunnel-coupled superconducting islands, with DC-only
control fields. We observe the effect of quasiparticle tunnelling, and we
dynamically classify the system into different quasiparticle sectors. When
tuned for circulation, the device exhibits strongly non-reciprocal 3-port
scattering, with average on-resonance insertion loss of 2 dB, isolation of 14
dB, power reflectance of -11 dB, and a bandwidth of 200 MHz.
Related papers
- Characterizing losses in InAs two-dimensional electron gas-based gatemon
qubits [4.597795956436758]
We present continuous-wave and time-domain characterization of gatemon qubits and coplanar waveguide resonators based on an InAs two-dimensional electron gas.
We show that the qubit undergoes a vacuum Rabi splitting with a readout cavity and we drive coherent Rabi oscillations between the qubit ground and first excited states.
We detail the loss mechanisms present in these materials through a systematic study of the quality factors of coplanar waveguide resonators.
arXiv Detail & Related papers (2023-09-29T14:23:28Z) - Superconducting Non-Reciprocity Based on Time-Modulated
Coupled-Resonator Systems [0.44641025448898464]
We present a unified approach for designing superconducting non-reciprocal components, including circulators, isolators, and uni-directional amplifiers.
Our method leverages standard SQUID-based resonators as building blocks to realize a wide range of on-chip non-reciprocal devices.
arXiv Detail & Related papers (2023-07-04T18:00:00Z) - Wideband Josephson Parametric Isolator [0.0]
We present an alternative two-port isolating integrated circuit derived from the DC Superconducting Quantum Interference Device (DC-SQUID)
Non-reciprocal transmission is achieved using the three-wave microwave mixing properties of a flux-modulated DC--SQUID.
arXiv Detail & Related papers (2022-12-16T16:39:21Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Magnetic-free traveling-wave nonreciprocal superconducting microwave
components [0.0]
We propose a design to realize integrated broadband nonreciprocal microwave isolators and circulators using superconducting circuit elements without any magnetic materials.
The bandwidth of 580 MHz can be realized over a nonreciprocal isolation of 20 dB in reflections.
arXiv Detail & Related papers (2021-06-05T16:15:38Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.