Neural approaches to spoken content embedding
- URL: http://arxiv.org/abs/2308.14905v1
- Date: Mon, 28 Aug 2023 21:16:08 GMT
- Title: Neural approaches to spoken content embedding
- Authors: Shane Settle
- Abstract summary: We contribute new discriminative acoustic word embedding (AWE) and acoustically grounded word embedding (AGWE) approaches based on recurrent neural networks (RNNs)
We apply our embedding models, both monolingual and multilingual, to the downstream tasks of query-by-example speech search and automatic speech recognition.
- Score: 1.3706331473063877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comparing spoken segments is a central operation to speech processing.
Traditional approaches in this area have favored frame-level dynamic
programming algorithms, such as dynamic time warping, because they require no
supervision, but they are limited in performance and efficiency. As an
alternative, acoustic word embeddings -- fixed-dimensional vector
representations of variable-length spoken word segments -- have begun to be
considered for such tasks as well. However, the current space of such
discriminative embedding models, training approaches, and their application to
real-world downstream tasks is limited. We start by considering ``single-view"
training losses where the goal is to learn an acoustic word embedding model
that separates same-word and different-word spoken segment pairs. Then, we
consider ``multi-view" contrastive losses. In this setting, acoustic word
embeddings are learned jointly with embeddings of character sequences to
generate acoustically grounded embeddings of written words, or acoustically
grounded word embeddings.
In this thesis, we contribute new discriminative acoustic word embedding
(AWE) and acoustically grounded word embedding (AGWE) approaches based on
recurrent neural networks (RNNs). We improve model training in terms of both
efficiency and performance. We take these developments beyond English to
several low-resource languages and show that multilingual training improves
performance when labeled data is limited. We apply our embedding models, both
monolingual and multilingual, to the downstream tasks of query-by-example
speech search and automatic speech recognition. Finally, we show how our
embedding approaches compare with and complement more recent self-supervised
speech models.
Related papers
- Integrating Self-supervised Speech Model with Pseudo Word-level Targets
from Visually-grounded Speech Model [57.78191634042409]
We propose Pseudo-Word HuBERT (PW-HuBERT), a framework that integrates pseudo word-level targets into the training process.
Our experimental results on four spoken language understanding (SLU) benchmarks suggest the superiority of our model in capturing semantic information.
arXiv Detail & Related papers (2024-02-08T16:55:21Z) - SPADE: Self-supervised Pretraining for Acoustic DisEntanglement [2.294014185517203]
We introduce a self-supervised approach to disentangle room acoustics from speech.
Our results demonstrate that our proposed approach significantly improves performance over a baseline when labeled training data is scarce.
arXiv Detail & Related papers (2023-02-03T01:36:38Z) - Integrating Form and Meaning: A Multi-Task Learning Model for Acoustic
Word Embeddings [19.195728241989702]
We propose a multi-task learning model that incorporates top-down lexical knowledge into the training procedure of acoustic word embeddings.
We experiment with three languages and demonstrate that incorporating lexical knowledge improves the embedding space discriminability.
arXiv Detail & Related papers (2022-09-14T13:33:04Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning
for Low-Resource Speech Recognition [159.9312272042253]
Wav-BERT is a cooperative acoustic and linguistic representation learning method.
We unify a pre-trained acoustic model (wav2vec 2.0) and a language model (BERT) into an end-to-end trainable framework.
arXiv Detail & Related papers (2021-09-19T16:39:22Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
We investigate the use of quantized vectors to model the latent linguistic embedding.
By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding.
Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations.
arXiv Detail & Related papers (2021-06-25T07:51:35Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z) - Multilingual Jointly Trained Acoustic and Written Word Embeddings [22.63696520064212]
We extend this idea to multiple low-resource languages.
We jointly train an AWE model and an AGWE model, using phonetically transcribed data from multiple languages.
The pre-trained models can then be used for unseen zero-resource languages, or fine-tuned on data from low-resource languages.
arXiv Detail & Related papers (2020-06-24T19:16:02Z) - Catplayinginthesnow: Impact of Prior Segmentation on a Model of Visually
Grounded Speech [24.187382590960254]
Children do not build their lexicon by segmenting spoken input into phonemes and then building up words from them.
This suggests that the ideal way of learning a language is by starting from full semantic units.
We present a simple way to introduce such information into an RNN-based model and investigate which type of boundary is the most efficient.
arXiv Detail & Related papers (2020-06-15T13:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.