Pose-Free Neural Radiance Fields via Implicit Pose Regularization
- URL: http://arxiv.org/abs/2308.15049v1
- Date: Tue, 29 Aug 2023 06:14:06 GMT
- Title: Pose-Free Neural Radiance Fields via Implicit Pose Regularization
- Authors: Jiahui Zhang, Fangneng Zhan, Yingchen Yu, Kunhao Liu, Rongliang Wu,
Xiaoqin Zhang, Ling Shao, Shijian Lu
- Abstract summary: IR-NeRF is an innovative pose-free neural radiance field (NeRF) that introduces implicit pose regularization to refine pose estimator with unposed real images.
With a collection of 2D images of a specific scene, IR-NeRF constructs a scene codebook that stores scene features and captures the scene-specific pose distribution implicitly as priors.
- Score: 117.648238941948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pose-free neural radiance fields (NeRF) aim to train NeRF with unposed
multi-view images and it has achieved very impressive success in recent years.
Most existing works share the pipeline of training a coarse pose estimator with
rendered images at first, followed by a joint optimization of estimated poses
and neural radiance field. However, as the pose estimator is trained with only
rendered images, the pose estimation is usually biased or inaccurate for real
images due to the domain gap between real images and rendered images, leading
to poor robustness for the pose estimation of real images and further local
minima in joint optimization. We design IR-NeRF, an innovative pose-free NeRF
that introduces implicit pose regularization to refine pose estimator with
unposed real images and improve the robustness of the pose estimation for real
images. With a collection of 2D images of a specific scene, IR-NeRF constructs
a scene codebook that stores scene features and captures the scene-specific
pose distribution implicitly as priors. Thus, the robustness of pose estimation
can be promoted with the scene priors according to the rationale that a 2D real
image can be well reconstructed from the scene codebook only when its estimated
pose lies within the pose distribution. Extensive experiments show that IR-NeRF
achieves superior novel view synthesis and outperforms the state-of-the-art
consistently across multiple synthetic and real datasets.
Related papers
- CT-NeRF: Incremental Optimizing Neural Radiance Field and Poses with Complex Trajectory [12.460959809597213]
We propose CT-NeRF, an incremental reconstruction optimization pipeline using only RGB images without pose and depth input.
We evaluate the performance of CT-NeRF on two real-world datasets, NeRFBuster and Free-Dataset.
arXiv Detail & Related papers (2024-04-22T06:07:06Z) - LU-NeRF: Scene and Pose Estimation by Synchronizing Local Unposed NeRFs [56.050550636941836]
A critical obstacle preventing NeRF models from being deployed broadly in the wild is their reliance on accurate camera poses.
We propose a novel approach, LU-NeRF, that jointly estimates camera poses and neural fields with relaxed assumptions on pose configuration.
We show our LU-NeRF pipeline outperforms prior attempts at unposed NeRF without making restrictive assumptions on the pose prior.
arXiv Detail & Related papers (2023-06-08T17:56:22Z) - HandNeRF: Neural Radiance Fields for Animatable Interacting Hands [122.32855646927013]
We propose a novel framework to reconstruct accurate appearance and geometry with neural radiance fields (NeRF) for interacting hands.
We conduct extensive experiments to verify the merits of our proposed HandNeRF and report a series of state-of-the-art results.
arXiv Detail & Related papers (2023-03-24T06:19:19Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - VMRF: View Matching Neural Radiance Fields [57.93631771072756]
VMRF is an innovative view matching NeRF that enables effective NeRF training without requiring prior knowledge in camera poses or camera pose distributions.
VMRF introduces a view matching scheme, which exploits unbalanced optimal transport to produce a feature transport plan for mapping a rendered image with randomly camera pose to the corresponding real image.
With the feature transport plan as the guidance, a novel pose calibration technique is designed which rectifies the initially randomized camera poses by predicting relative pose between the pair of rendered and real images.
arXiv Detail & Related papers (2022-07-06T12:26:40Z) - iNeRF: Inverting Neural Radiance Fields for Pose Estimation [68.91325516370013]
We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF)
NeRFs have been shown to be remarkably effective for the task of view synthesis.
arXiv Detail & Related papers (2020-12-10T18:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.