Evaluation and Analysis of Hallucination in Large Vision-Language Models
- URL: http://arxiv.org/abs/2308.15126v3
- Date: Tue, 10 Oct 2023 11:57:26 GMT
- Title: Evaluation and Analysis of Hallucination in Large Vision-Language Models
- Authors: Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng Shi, Chenlin Zhao,
Haiyang Xu, Qinghao Ye, Ming Yan, Ji Zhang, Jihua Zhu, Jitao Sang, Haoyu Tang
- Abstract summary: Large Vision-Language Models (LVLMs) have recently achieved remarkable success.
LVLMs are still plagued by the hallucination problem.
Hallucination refers to the information of LVLMs' responses that does not exist in the visual input.
- Score: 49.19829480199372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) have recently achieved remarkable
success. However, LVLMs are still plagued by the hallucination problem, which
limits the practicality in many scenarios. Hallucination refers to the
information of LVLMs' responses that does not exist in the visual input, which
poses potential risks of substantial consequences. There has been limited work
studying hallucination evaluation in LVLMs. In this paper, we propose
Hallucination Evaluation based on Large Language Models (HaELM), an LLM-based
hallucination evaluation framework. HaELM achieves an approximate 95%
performance comparable to ChatGPT and has additional advantages including low
cost, reproducibility, privacy preservation and local deployment. Leveraging
the HaELM, we evaluate the hallucination in current LVLMs. Furthermore, we
analyze the factors contributing to hallucination in LVLMs and offer helpful
suggestions to mitigate the hallucination problem. Our training data and human
annotation hallucination data will be made public soon.
Related papers
- A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
The existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields.
The structure of LVLMs and main causes of hallucination generation are introduced.
The available hallucination evaluation benchmarks for LVLMs are presented.
arXiv Detail & Related papers (2024-10-20T10:58:58Z) - Investigating and Mitigating the Multimodal Hallucination Snowballing in Large Vision-Language Models [33.19894606649144]
Though advanced in understanding visual information with human languages, Large Vision-Language Models (LVLMs) still suffer from multimodal hallucinations.
We propose a framework called MMHalball to evaluate LVLMs' behaviors when encountering generated hallucinations.
We propose a training-free method called Residual Visual Decoding, where we revise the output distribution of LVLMs with the one derived from the residual visual input.
arXiv Detail & Related papers (2024-06-30T03:04:11Z) - Does Object Grounding Really Reduce Hallucination of Large Vision-Language Models? [53.89380284760555]
Large vision-language models (LVLMs) produce captions that mention concepts that cannot be found in the image.
These hallucinations erode the trustworthiness of LVLMs and are arguably among the main obstacles to their ubiquitous adoption.
Recent work suggests that addition of grounding objectives -- those that explicitly align image regions or objects to text spans -- reduces the amount of LVLM hallucination.
arXiv Detail & Related papers (2024-06-20T16:56:11Z) - A Survey on Hallucination in Large Vision-Language Models [18.540878498840435]
Large Vision-Language Models (LVLMs) have attracted growing attention within the AI landscape for its practical implementation potential.
However, hallucination'', or more specifically, the misalignment between factual visual content and corresponding textual generation, poses a significant challenge of utilizing LVLMs.
We dissect LVLM-related hallucinations in an attempt to establish an overview and facilitate future mitigation.
arXiv Detail & Related papers (2024-02-01T00:33:21Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
hallucination poses great challenge to trustworthy and reliable deployment of large language models.
Three key questions should be well studied: how to detect hallucinations (detection), why do LLMs hallucinate (source), and what can be done to mitigate them.
This work presents a systematic empirical study on LLM hallucination, focused on the the three aspects of hallucination detection, source and mitigation.
arXiv Detail & Related papers (2024-01-06T12:40:45Z) - Analyzing and Mitigating Object Hallucination in Large Vision-Language Models [110.12460299261531]
Large vision-language models (LVLMs) have shown remarkable abilities in understanding visual information with human languages.
LVLMs still suffer from object hallucination, which is the problem of generating descriptions that include objects that do not actually exist in the images.
We propose a powerful algorithm, LVLM Hallucination Revisor (LURE), to rectify object hallucination in LVLMs by reconstructing less hallucinatory descriptions.
arXiv Detail & Related papers (2023-10-01T18:10:53Z) - Evaluating Object Hallucination in Large Vision-Language Models [122.40337582958453]
This work presents the first systematic study on object hallucination of large vision-language models (LVLMs)
We find that LVLMs tend to generate objects that are inconsistent with the target images in the descriptions.
We propose a polling-based query method called POPE to evaluate the object hallucination.
arXiv Detail & Related papers (2023-05-17T16:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.