Efficient Model Personalization in Federated Learning via
Client-Specific Prompt Generation
- URL: http://arxiv.org/abs/2308.15367v1
- Date: Tue, 29 Aug 2023 15:03:05 GMT
- Title: Efficient Model Personalization in Federated Learning via
Client-Specific Prompt Generation
- Authors: Fu-En Yang, Chien-Yi Wang, Yu-Chiang Frank Wang
- Abstract summary: Federated learning (FL) emerges as a decentralized learning framework which trains models from multiple distributed clients without sharing their data to preserve privacy.
We propose a novel personalized FL framework of client-specific Prompt Generation (pFedPG)
pFedPG learns to deploy a personalized prompt generator at the server for producing client-specific visual prompts that efficiently adapts frozen backbones to local data distributions.
- Score: 38.42808389088285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) emerges as a decentralized learning framework which
trains models from multiple distributed clients without sharing their data to
preserve privacy. Recently, large-scale pre-trained models (e.g., Vision
Transformer) have shown a strong capability of deriving robust representations.
However, the data heterogeneity among clients, the limited computation
resources, and the communication bandwidth restrict the deployment of
large-scale models in FL frameworks. To leverage robust representations from
large-scale models while enabling efficient model personalization for
heterogeneous clients, we propose a novel personalized FL framework of
client-specific Prompt Generation (pFedPG), which learns to deploy a
personalized prompt generator at the server for producing client-specific
visual prompts that efficiently adapts frozen backbones to local data
distributions. Our proposed framework jointly optimizes the stages of
personalized prompt adaptation locally and personalized prompt generation
globally. The former aims to train visual prompts that adapt foundation models
to each client, while the latter observes local optimization directions to
generate personalized prompts for all clients. Through extensive experiments on
benchmark datasets, we show that our pFedPG is favorable against
state-of-the-art personalized FL methods under various types of data
heterogeneity, allowing computation and communication efficient model
personalization.
Related papers
- FedSheafHN: Personalized Federated Learning on Graph-structured Data [22.825083541211168]
We propose a model called FedSheafHN, which embeds each client's local subgraph into a server-constructed collaboration graph.
Our model improves the integration and interpretation of complex client characteristics.
It also has fast model convergence and effective new clients generalization.
arXiv Detail & Related papers (2024-05-25T04:51:41Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data.
We propose pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models.
We show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T12:21:34Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Personalizing or Not: Dynamically Personalized Federated Learning with
Incentives [37.42347737911428]
We propose personalized federated learning (FL) for learning personalized models without sharing private data.
We introduce the personalization rate, measured as the fraction of clients willing to train personalized models, into federated settings and propose DyPFL.
This technique incentivizes clients to participate in personalizing local models while allowing the adoption of the global model when it performs better.
arXiv Detail & Related papers (2022-08-12T09:51:20Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
We propose an alternative to federated learning, where each client federates with other relevant clients to obtain a stronger model per client-specific objectives.
We do not assume knowledge of underlying data distributions or client similarities, and allow each client to optimize for arbitrary target distributions of interest.
Our method outperforms existing alternatives, while also enabling new features for personalized FL such as transfer outside of local data distributions.
arXiv Detail & Related papers (2020-12-15T19:30:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.