Benchmarking Robustness and Generalization in Multi-Agent Systems: A
Case Study on Neural MMO
- URL: http://arxiv.org/abs/2308.15802v1
- Date: Wed, 30 Aug 2023 07:16:11 GMT
- Title: Benchmarking Robustness and Generalization in Multi-Agent Systems: A
Case Study on Neural MMO
- Authors: Yangkun Chen, Joseph Suarez, Junjie Zhang, Chenghui Yu, Bo Wu, Hanmo
Chen, Hengman Zhu, Rui Du, Shanliang Qian, Shuai Liu, Weijun Hong, Jinke He,
Yibing Zhang, Liang Zhao, Clare Zhu, Julian Togelius, Sharada Mohanty, Jiaxin
Chen, Xiu Li, Xiaolong Zhu, Phillip Isola
- Abstract summary: We present the results of the second Neural MMO challenge, hosted at IJCAI 2022, which received 1600+ submissions.
This competition targets robustness and generalization in multi-agent systems.
We will open-source our benchmark including the environment wrapper, baselines, a visualization tool, and selected policies for further research.
- Score: 50.58083807719749
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present the results of the second Neural MMO challenge, hosted at IJCAI
2022, which received 1600+ submissions. This competition targets robustness and
generalization in multi-agent systems: participants train teams of agents to
complete a multi-task objective against opponents not seen during training. The
competition combines relatively complex environment design with large numbers
of agents in the environment. The top submissions demonstrate strong success on
this task using mostly standard reinforcement learning (RL) methods combined
with domain-specific engineering. We summarize the competition design and
results and suggest that, as an academic community, competitions may be a
powerful approach to solving hard problems and establishing a solid benchmark
for algorithms. We will open-source our benchmark including the environment
wrapper, baselines, a visualization tool, and selected policies for further
research.
Related papers
- FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning [25.857375787748715]
We present FightLadder, a real-time fighting game platform, to empower competitive MARL research.
We provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics.
We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode.
arXiv Detail & Related papers (2024-06-04T08:04:23Z) - CompeteSMoE -- Effective Training of Sparse Mixture of Experts via
Competition [52.2034494666179]
Sparse mixture of experts (SMoE) offers an appealing solution to scale up the model complexity beyond the mean of increasing the network's depth or width.
We propose a competition mechanism to address this fundamental challenge of representation collapse.
By routing inputs only to experts with the highest neural response, we show that, under mild assumptions, competition enjoys the same convergence rate as the optimal estimator.
arXiv Detail & Related papers (2024-02-04T15:17:09Z) - The NeurIPS 2022 Neural MMO Challenge: A Massively Multiagent
Competition with Specialization and Trade [41.639843908635875]
The NeurIPS-2022 Neural MMO Challenge attracted 500 participants and received over 1,600 submissions.
This year's competition runs on the latest v1.6 Neural MMO, which introduces new equipment, combat, trading, and a better scoring system.
This paper summarizes the design and results of the challenge, explores the potential of this environment as a benchmark for learning methods, and presents some practical reinforcement learning approaches for complex tasks with sparse rewards.
arXiv Detail & Related papers (2023-11-07T04:14:45Z) - DIAMBRA Arena: a New Reinforcement Learning Platform for Research and
Experimentation [91.3755431537592]
This work presents DIAMBRA Arena, a new platform for reinforcement learning research and experimentation.
It features a collection of high-quality environments exposing a Python API fully compliant with OpenAI Gym standard.
They are episodic tasks with discrete actions and observations composed by raw pixels plus additional numerical values.
arXiv Detail & Related papers (2022-10-19T14:39:10Z) - Retrospective on the 2021 BASALT Competition on Learning from Human
Feedback [92.37243979045817]
The goal of the competition was to promote research towards agents that use learning from human feedback (LfHF) techniques to solve open-world tasks.
Rather than mandating the use of LfHF techniques, we described four tasks in natural language to be accomplished in the video game Minecraft.
Teams developed a diverse range of LfHF algorithms across a variety of possible human feedback types.
arXiv Detail & Related papers (2022-04-14T17:24:54Z) - Towards robust and domain agnostic reinforcement learning competitions [12.731614722371376]
Reinforcement learning competitions have formed the basis for standard research benchmarks.
Despite this, a majority of challenges suffer from the same fundamental problems.
We present a new framework of competition design that promotes the development of algorithms that overcome these barriers.
arXiv Detail & Related papers (2021-06-07T16:15:46Z) - The MineRL 2020 Competition on Sample Efficient Reinforcement Learning
using Human Priors [62.9301667732188]
We propose a second iteration of the MineRL Competition.
The primary goal of the competition is to foster the development of algorithms which can efficiently leverage human demonstrations.
The competition is structured into two rounds in which competitors are provided several paired versions of the dataset and environment.
At the end of each round, competitors submit containerized versions of their learning algorithms to the AIcrowd platform.
arXiv Detail & Related papers (2021-01-26T20:32:30Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.