Learning Vision-based Pursuit-Evasion Robot Policies
- URL: http://arxiv.org/abs/2308.16185v1
- Date: Wed, 30 Aug 2023 17:59:05 GMT
- Title: Learning Vision-based Pursuit-Evasion Robot Policies
- Authors: Andrea Bajcsy, Antonio Loquercio, Ashish Kumar, Jitendra Malik
- Abstract summary: We develop a fully-observable robot policy that generates supervision for a partially-observable one.
We deploy our policy on a physical quadruped robot with an RGB-D camera on pursuit-evasion interactions in the wild.
- Score: 54.52536214251999
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning strategic robot behavior -- like that required in pursuit-evasion
interactions -- under real-world constraints is extremely challenging. It
requires exploiting the dynamics of the interaction, and planning through both
physical state and latent intent uncertainty. In this paper, we transform this
intractable problem into a supervised learning problem, where a
fully-observable robot policy generates supervision for a partially-observable
one. We find that the quality of the supervision signal for the
partially-observable pursuer policy depends on two key factors: the balance of
diversity and optimality of the evader's behavior and the strength of the
modeling assumptions in the fully-observable policy. We deploy our policy on a
physical quadruped robot with an RGB-D camera on pursuit-evasion interactions
in the wild. Despite all the challenges, the sensing constraints bring about
creativity: the robot is pushed to gather information when uncertain, predict
intent from noisy measurements, and anticipate in order to intercept. Project
webpage: https://abajcsy.github.io/vision-based-pursuit/
Related papers
- Grounding Robot Policies with Visuomotor Language Guidance [15.774237279917594]
We propose an agent-based framework for grounding robot policies to the current context.
The proposed framework is composed of a set of conversational agents designed for specific roles.
We demonstrate that our approach can effectively guide manipulation policies to achieve significantly higher success rates.
arXiv Detail & Related papers (2024-10-09T02:00:37Z) - Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
Key limitation of learned robot control policies is their inability to generalize outside their training data.
Recent works on vision-language-action models (VLAs) have shown that the use of large, internet pre-trained vision-language models can substantially improve their robustness and generalization ability.
We introduce Embodied Chain-of-Thought Reasoning (ECoT) for VLAs, in which we train VLAs to perform multiple steps of reasoning about plans, sub-tasks, motions, and visually grounded features before predicting the robot action.
arXiv Detail & Related papers (2024-07-11T17:31:01Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
We seek to learn a generalizable goal-conditioned policy that enables zero-shot robot manipulation.
Our framework,Track2Act predicts tracks of how points in an image should move in future time-steps based on a goal.
We show that this approach of combining scalably learned track prediction with a residual policy enables diverse generalizable robot manipulation.
arXiv Detail & Related papers (2024-05-02T17:56:55Z) - Deception Game: Closing the Safety-Learning Loop in Interactive Robot
Autonomy [7.915956857741506]
Existing safety methods often neglect the robot's ability to learn and adapt at runtime, leading to overly conservative behavior.
This paper proposes a new closed-loop paradigm for synthesizing safe control policies that explicitly account for the robot's evolving uncertainty.
arXiv Detail & Related papers (2023-09-03T20:34:01Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Intention Aware Robot Crowd Navigation with Attention-Based Interaction
Graph [3.8461692052415137]
We study the problem of safe and intention-aware robot navigation in dense and interactive crowds.
We propose a novel recurrent graph neural network with attention mechanisms to capture heterogeneous interactions among agents.
We demonstrate that our method enables the robot to achieve good navigation performance and non-invasiveness in challenging crowd navigation scenarios.
arXiv Detail & Related papers (2022-03-03T16:26:36Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
Obstacle avoidance is a fundamental and challenging problem for autonomous navigation of mobile robots.
In this paper, we consider the problem of obstacle avoidance in simple 3D environments where the robot has to solely rely on a single monocular camera.
We tackle the obstacle avoidance problem as a data-driven end-to-end deep learning approach.
arXiv Detail & Related papers (2021-03-08T13:05:46Z) - Sim2Real for Peg-Hole Insertion with Eye-in-Hand Camera [58.720142291102135]
We use a simulator to learn the peg-hole insertion problem and then transfer the learned model to the real robot.
We show that the transferred policy, which only takes RGB-D and joint information (proprioception) can perform well on the real robot.
arXiv Detail & Related papers (2020-05-29T05:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.