Short Paper: Accountable Safety Implies Finality
- URL: http://arxiv.org/abs/2308.16902v3
- Date: Thu, 28 Dec 2023 05:39:36 GMT
- Title: Short Paper: Accountable Safety Implies Finality
- Authors: Joachim Neu, Ertem Nusret Tas, David Tse,
- Abstract summary: Two key desiderata have been studied for Byzantine-fault tolerant (BFT) state-machine replication (SMR) consensus protocols.
We show that accountable safety implies finality, thereby unifying earlier results.
- Score: 10.589723476970443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by proof-of-stake (PoS) blockchains such as Ethereum, two key desiderata have recently been studied for Byzantine-fault tolerant (BFT) state-machine replication (SMR) consensus protocols: Finality means that the protocol retains consistency, as long as less than a certain fraction of validators are malicious, even in partially-synchronous environments that allow for temporary violations of assumed network delay bounds. Accountable safety means that in any case of inconsistency, a certain fraction of validators can be identified to have provably violated the protocol. Earlier works have developed impossibility results and protocol constructions for these properties separately. We show that accountable safety implies finality, thereby unifying earlier results.
Related papers
- Robust Yet Efficient Conformal Prediction Sets [53.78604391939934]
Conformal prediction (CP) can convert any model's output into prediction sets guaranteed to include the true label.
We derive provably robust sets by bounding the worst-case change in conformity scores.
arXiv Detail & Related papers (2024-07-12T10:59:44Z) - Security of hybrid BB84 with heterodyne detection [0.0]
Quantum key distribution (QKD) promises everlasting security based on the laws of physics.
Recent hybrid QKD protocols have been introduced to leverage advantages from both categories.
We provide a rigorous security proof for a protocol introduced by Qi in 2021, where information is encoded in discrete variables.
arXiv Detail & Related papers (2024-02-26T19:00:01Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Security of a Continuous-Variable based Quantum Position Verification
Protocol [0.0]
We present and analyze a protocol that utilizes coherent states and its properties.
We prove security of the protocol against any unentangled attackers via entropic uncertainty relations.
We show that attackers who pre-share one continuous-variable EPR pair can break the protocol.
arXiv Detail & Related papers (2023-08-08T09:56:38Z) - Robustness of implemented device-independent protocols against
constrained leakage [0.0]
Device-independent (DI) protocols have experienced significant progress in recent years.
Security proofs for those demonstrations rely on a typical assumption in DI cryptography, that the devices do not leak any unwanted information to each other or to an adversary.
arXiv Detail & Related papers (2023-02-27T16:28:23Z) - Finite-Size Security for Discrete-Modulated Continuous-Variable Quantum
Key Distribution Protocols [4.58733012283457]
We present a composable finite-size security proof against independently and identically distributed collective attacks for a general DM CV-QKD protocol.
We extend and apply a numerical security proof technique to calculate tight lower bounds on the secure key rate.
Results show that our security proof method yields secure finitesize key rates under experimentally viable conditions up to at least 72km transmission distance.
arXiv Detail & Related papers (2023-01-20T17:16:21Z) - The Quantum Chernoff Divergence in Advantage Distillation for QKD and
DIQKD [0.0]
Device-independent quantum key distribution (DIQKD) aims to mitigate adversarial exploitation of imperfections in quantum devices.
We present an alternative proof structure that replaces the fidelity with the quantum Chernoff divergence.
Our results provide insight into a fundamental question in quantum information theory regarding the circumstances under which DIQKD is possible.
arXiv Detail & Related papers (2022-12-14T01:44:23Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
Conformal off-policy prediction can output reliable predictive intervals for the outcome under a new target policy.
We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup.
arXiv Detail & Related papers (2022-06-09T10:39:33Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
We construct the first fully homomorphic encryption scheme with certified deletion.
Our main technical ingredient is an interactive protocol by which a quantum prover can convince a classical verifier that a sample from the Learning with Errors distribution in the form of a quantum state was deleted.
arXiv Detail & Related papers (2022-03-03T10:07:32Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.