Laplacian-Former: Overcoming the Limitations of Vision Transformers in
Local Texture Detection
- URL: http://arxiv.org/abs/2309.00108v1
- Date: Thu, 31 Aug 2023 19:56:14 GMT
- Title: Laplacian-Former: Overcoming the Limitations of Vision Transformers in
Local Texture Detection
- Authors: Reza Azad, Amirhossein Kazerouni, Babak Azad, Ehsan Khodapanah Aghdam,
Yury Velichko, Ulas Bagci, Dorit Merhof
- Abstract summary: Vision Transformer (ViT) models have demonstrated a breakthrough in a wide range of computer vision tasks.
These models struggle to capture high-frequency components of images, which can limit their ability to detect local textures and edge information.
We propose a new technique, Laplacian-Former, that enhances the self-attention map by adaptively re-calibrating the frequency information in a Laplacian pyramid.
- Score: 3.784298636620067
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision Transformer (ViT) models have demonstrated a breakthrough in a wide
range of computer vision tasks. However, compared to the Convolutional Neural
Network (CNN) models, it has been observed that the ViT models struggle to
capture high-frequency components of images, which can limit their ability to
detect local textures and edge information. As abnormalities in human tissue,
such as tumors and lesions, may greatly vary in structure, texture, and shape,
high-frequency information such as texture is crucial for effective semantic
segmentation tasks. To address this limitation in ViT models, we propose a new
technique, Laplacian-Former, that enhances the self-attention map by adaptively
re-calibrating the frequency information in a Laplacian pyramid. More
specifically, our proposed method utilizes a dual attention mechanism via
efficient attention and frequency attention while the efficient attention
mechanism reduces the complexity of self-attention to linear while producing
the same output, selectively intensifying the contribution of shape and texture
features. Furthermore, we introduce a novel efficient enhancement multi-scale
bridge that effectively transfers spatial information from the encoder to the
decoder while preserving the fundamental features. We demonstrate the efficacy
of Laplacian-former on multi-organ and skin lesion segmentation tasks with
+1.87\% and +0.76\% dice scores compared to SOTA approaches, respectively. Our
implementation is publically available at
https://github.com/mindflow-institue/Laplacian-Former
Related papers
- Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - SeUNet-Trans: A Simple yet Effective UNet-Transformer Model for Medical
Image Segmentation [0.0]
We propose a simple yet effective UNet-Transformer (seUNet-Trans) model for medical image segmentation.
In our approach, the UNet model is designed as a feature extractor to generate multiple feature maps from the input images.
By leveraging the UNet architecture and the self-attention mechanism, our model not only retains the preservation of both local and global context information but also is capable of capturing long-range dependencies between input elements.
arXiv Detail & Related papers (2023-10-16T01:13:38Z) - DAT++: Spatially Dynamic Vision Transformer with Deformable Attention [87.41016963608067]
We present Deformable Attention Transformer ( DAT++), a vision backbone efficient and effective for visual recognition.
DAT++ achieves state-of-the-art results on various visual recognition benchmarks, with 85.9% ImageNet accuracy, 54.5 and 47.0 MS-COCO instance segmentation mAP, and 51.5 ADE20K semantic segmentation mIoU.
arXiv Detail & Related papers (2023-09-04T08:26:47Z) - Enhancing Performance of Vision Transformers on Small Datasets through
Local Inductive Bias Incorporation [13.056764072568749]
Vision transformers (ViTs) achieve remarkable performance on large datasets, but tend to perform worse than convolutional neural networks (CNNs) on smaller datasets.
We propose a module called Local InFormation Enhancer (LIFE) that extracts patch-level local information and incorporates it into the embeddings used in the self-attention block of ViTs.
Our proposed module is memory and efficient, as well as flexible enough to process auxiliary tokens such as the classification and distillation tokens.
arXiv Detail & Related papers (2023-05-15T11:23:18Z) - Vicinity Vision Transformer [53.43198716947792]
We present a Vicinity Attention that introduces a locality bias to vision transformers with linear complexity.
Our approach achieves state-of-the-art image classification accuracy with 50% fewer parameters than previous methods.
arXiv Detail & Related papers (2022-06-21T17:33:53Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Vision Transformer with Deformable Attention [29.935891419574602]
Large, sometimes even global, receptive field endows Transformer models with higher representation power over their CNN counterparts.
We propose a novel deformable self-attention module, where the positions of key and value pairs in self-attention are selected in a data-dependent way.
We present Deformable Attention Transformer, a general backbone model with deformable attention for both image classification and dense prediction tasks.
arXiv Detail & Related papers (2022-01-03T08:29:01Z) - RAMS-Trans: Recurrent Attention Multi-scale Transformer forFine-grained
Image Recognition [26.090419694326823]
localization and amplification of region attention is an important factor, which has been explored a lot by convolutional neural networks (CNNs) based approaches.
We propose the recurrent attention multi-scale transformer (RAMS-Trans) which uses the transformer's self-attention to learn discriminative region attention.
arXiv Detail & Related papers (2021-07-17T06:22:20Z) - Less is More: Pay Less Attention in Vision Transformers [61.05787583247392]
Less attention vIsion Transformer builds upon the fact that convolutions, fully-connected layers, and self-attentions have almost equivalent mathematical expressions for processing image patch sequences.
The proposed LIT achieves promising performance on image recognition tasks, including image classification, object detection and instance segmentation.
arXiv Detail & Related papers (2021-05-29T05:26:07Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.