RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback
- URL: http://arxiv.org/abs/2309.00267v3
- Date: Tue, 3 Sep 2024 14:01:54 GMT
- Title: RLAIF vs. RLHF: Scaling Reinforcement Learning from Human Feedback with AI Feedback
- Authors: Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, Sushant Prakash,
- Abstract summary: Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but gathering high-quality preference labels is expensive.
RLAIF offers a promising alternative that trains the reward model (RM) on preferences generated by an off-the-shelf LLM.
Our results suggest that RLAIF can achieve performance on-par with using human feedback, offering a potential solution to the scalability limitations of RLHF.
- Score: 5.3113139864044046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) has proven effective in aligning large language models (LLMs) with human preferences, but gathering high-quality preference labels is expensive. RL from AI Feedback (RLAIF), introduced in Bai et al., offers a promising alternative that trains the reward model (RM) on preferences generated by an off-the-shelf LLM. Across the tasks of summarization, helpful dialogue generation, and harmless dialogue generation, we show that RLAIF achieves comparable performance to RLHF. Furthermore, we take a step towards "self-improvement" by demonstrating that RLAIF can outperform a supervised fine-tuned baseline even when the AI labeler is the same size as the policy, or even the exact same checkpoint as the initial policy. Finally, we introduce direct-RLAIF (d-RLAIF) - a technique that circumvents RM training by obtaining rewards directly from an off-the-shelf LLM during RL, which achieves superior performance to canonical RLAIF. Our results suggest that RLAIF can achieve performance on-par with using human feedback, offering a potential solution to the scalability limitations of RLHF.
Related papers
- Generative Reward Models [42.30530024761532]
Reinforcement Learning from Human Feedback (RLHF) has greatly improved the performance of modern Large Language Models (LLMs)
Recent work has shown that synthetic preferences labels may not align well with human preference judgments.
We propose a hybrid approach that unifies RLHF and RLAIF methodologies.
Our results show that combining the strengths of RLHF and RLAIF offers a promising approach for improving the quality of synthetic preference labels.
arXiv Detail & Related papers (2024-10-02T17:58:39Z) - Reward Difference Optimization For Sample Reweighting In Offline RLHF [18.62836654699957]
Current offline RLHF only captures the "ordinal relationship" between responses, overlooking the crucial aspect of how much one is preferred over the others.
We propose a simple yet effective solution called Reward Difference Optimization, shorted as RDO.
Experiments with 7B LLMs on the HH and TL;DR datasets substantiate the effectiveness of our method in both automatic metrics and human evaluation.
arXiv Detail & Related papers (2024-08-18T07:04:16Z) - RLHF Workflow: From Reward Modeling to Online RLHF [79.83927049253924]
We present the workflow of Online Iterative Reinforcement Learning from Human Feedback (RLHF) in this technical report.
RLHF is widely reported to outperform its offline counterpart by a large margin in the recent large language model (LLM) literature.
We show that supervised fine-tuning (SFT) and iterative RLHF can obtain state-of-the-art performance with fully open-source datasets.
arXiv Detail & Related papers (2024-05-13T15:50:39Z) - A Critical Evaluation of AI Feedback for Aligning Large Language Models [60.42291111149438]
We show that simple supervised fine-tuning with GPT-4 as the teacher outperforms existing RLAIF pipelines.
More generally, we find that the gains from RLAIF vary substantially across base model families, test-time evaluation protocols, and critic models.
arXiv Detail & Related papers (2024-02-19T18:53:54Z) - Improving Reinforcement Learning from Human Feedback with Efficient Reward Model Ensemble [67.4269821365504]
Reinforcement Learning from Human Feedback (RLHF) is a widely adopted approach for aligning large language models with human values.
However, RLHF relies on a reward model that is trained with a limited amount of human preference data.
We contribute a reward ensemble method that allows the reward model to make more accurate predictions.
arXiv Detail & Related papers (2024-01-30T00:17:37Z) - Uncertainty-Penalized Reinforcement Learning from Human Feedback with
Diverse Reward LoRA Ensembles [26.955375398765085]
Reinforcement learning from human feedback (RLHF) emerges as a promising paradigm for aligning large language models (LLMs)
In this paper, we observe the weakness of KL regularization which is commonly employed in existing RLHF methods to address overoptimization.
We propose uncertainty-penalized RLHF (UP-RLHF), which incorporates uncertainty regularization during RL-finetuning.
arXiv Detail & Related papers (2023-12-30T14:14:14Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Language Reward Modulation for Pretraining Reinforcement Learning [61.76572261146311]
We propose leveraging the capabilities of LRFs as a pretraining signal for reinforcement learning.
Our VLM pretraining approach, which is a departure from previous attempts to use LRFs, can warmstart sample-efficient learning on robot manipulation tasks.
arXiv Detail & Related papers (2023-08-23T17:37:51Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z) - Fine-tuning Language Models with Generative Adversarial Reward Modelling [30.424363135421917]
Reinforcement Learning with Human Feedback (RLHF) has been demonstrated to significantly enhance the performance of large language models (LLMs)
We propose another alternative approach: Reinforcement Learning with Generative Adversarial Feedback (RLGAF) to RLHF and SFT.
arXiv Detail & Related papers (2023-05-09T17:06:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.