Multitask Deep Learning for Accurate Risk Stratification and Prediction
of Next Steps for Coronary CT Angiography Patients
- URL: http://arxiv.org/abs/2309.00330v1
- Date: Fri, 1 Sep 2023 08:34:13 GMT
- Title: Multitask Deep Learning for Accurate Risk Stratification and Prediction
of Next Steps for Coronary CT Angiography Patients
- Authors: Juan Lu, Mohammed Bennamoun, Jonathon Stewart, JasonK.Eshraghian,
Yanbin Liu, Benjamin Chow, Frank M.Sanfilippo and Girish Dwivedi
- Abstract summary: We propose a multi-task deep learning model to support risk stratification and down-stream test selection.
Our model achieved an Area Under the receiver operating characteristic Curve (AUC) of 0.76 in CAD risk stratification, and 0.72 AUC in predicting downstream tests.
- Score: 26.50934421749854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diagnostic investigation has an important role in risk stratification and
clinical decision making of patients with suspected and documented Coronary
Artery Disease (CAD). However, the majority of existing tools are primarily
focused on the selection of gatekeeper tests, whereas only a handful of systems
contain information regarding the downstream testing or treatment. We propose a
multi-task deep learning model to support risk stratification and down-stream
test selection for patients undergoing Coronary Computed Tomography Angiography
(CCTA). The analysis included 14,021 patients who underwent CCTA between 2006
and 2017. Our novel multitask deep learning framework extends the state-of-the
art Perceiver model to deal with real-world CCTA report data. Our model
achieved an Area Under the receiver operating characteristic Curve (AUC) of
0.76 in CAD risk stratification, and 0.72 AUC in predicting downstream tests.
Our proposed deep learning model can accurately estimate the likelihood of CAD
and provide recommended downstream tests based on prior CCTA data. In clinical
practice, the utilization of such an approach could bring a paradigm shift in
risk stratification and downstream management. Despite significant progress
using deep learning models for tabular data, they do not outperform gradient
boosting decision trees, and further research is required in this area.
However, neural networks appear to benefit more readily from multi-task
learning than tree-based models. This could offset the shortcomings of using
single task learning approach when working with tabular data.
Related papers
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
We propose a novel deep learning approach for breast cancer survival risk stratification.
We employ vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level.
A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy.
arXiv Detail & Related papers (2024-02-19T02:31:36Z) - Multimodal Pretraining of Medical Time Series and Notes [45.89025874396911]
Deep learning models show promise in extracting meaningful patterns, but they require extensive labeled data.
We propose a novel approach employing self-supervised pretraining, focusing on the alignment of clinical measurements and notes.
In downstream tasks, including in-hospital mortality prediction and phenotyping, our model outperforms baselines in settings where only a fraction of the data is labeled.
arXiv Detail & Related papers (2023-12-11T21:53:40Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Self-supervised Model Based on Masked Autoencoders Advance CT Scans
Classification [0.0]
This paper is inspired by the self-supervised learning algorithm MAE.
It uses the MAE model pre-trained on ImageNet to perform transfer learning on CT Scans dataset.
This method improves the generalization performance of the model and avoids the risk of overfitting on small datasets.
arXiv Detail & Related papers (2022-10-11T00:52:05Z) - DeepTechnome: Mitigating Unknown Bias in Deep Learning Based Assessment
of CT Images [44.62475518267084]
We debias deep learning models during training against unknown bias.
We use control regions as surrogates that carry information regarding the bias.
Applying the proposed method to learn from data exhibiting a strong bias, it near-perfectly recovers the classification performance observed when training with corresponding unbiased data.
arXiv Detail & Related papers (2022-05-26T12:18:48Z) - Using Deep Learning-based Features Extracted from CT scans to Predict
Outcomes in COVID-19 Patients [0.4841303207359715]
A novel methodology is proposed by combining multi-modal features, extracted from Computed Tomography (CT) scans and Electronic Health Record (EHR) data.
Deep learning models are leveraged to extract quantitative features from CT scans.
These features combined with those directly read from the EHR database are fed into machine learning models to eventually output the probabilities of patient outcomes.
arXiv Detail & Related papers (2022-05-10T16:22:16Z) - Automatic CAD-RADS Scoring Using Deep Learning [5.789689435835229]
The CAD-Reporting and Data System (CAD-RADS) has been developed to standardize communication and aid in decision making based on CCTA findings.
The CAD-RADS score is determined by manual assessment of all coronary vessels and the grading of lesions within the coronary artery tree.
We propose a bottom-up approach for fully-automated prediction of this score using deep-learning operating on a segment-wise representation of the coronary arteries.
arXiv Detail & Related papers (2020-10-05T12:48:15Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - CT-based COVID-19 Triage: Deep Multitask Learning Improves Joint
Identification and Severity Quantification [45.86448200141968]
We describe two basic setups: Identification of COVID-19 to prioritize studies of potentially infected patients to isolate them as early as possible; Severity quantification to highlight studies of severe patients and direct them to a hospital or provide emergency medical care.
We propose a multitask approach to consolidate both triage approaches and propose a convolutional neural network to combine all available labels within a single model.
We train our model on approximately 2000 publicly available CT studies and test it with a carefully designed set consisting of 32 COVID-19 studies, 30 cases with bacterial pneumonia, 31 healthy patients, and 30 patients with other lung pathologies to emulate a typical patient flow in
arXiv Detail & Related papers (2020-06-02T08:05:06Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.