Towards Cross-Provider Analysis of Transparency Information for Data
Protection
- URL: http://arxiv.org/abs/2309.00382v2
- Date: Tue, 5 Sep 2023 09:33:05 GMT
- Title: Towards Cross-Provider Analysis of Transparency Information for Data
Protection
- Authors: Elias Gr\"unewald, Johannes M. Halkenh\"au{\ss}er, Nicola Leschke,
Frank Pallas
- Abstract summary: This paper presents a novel approach to enable large-scale transparency information analysis across service providers.
We provide the general approach for advanced transparency information analysis, an open source architecture and implementation in the form of a queryable analysis platform.
Future work can build upon our contributions to gain more insights into so-far hidden data-sharing practices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transparency and accountability are indispensable principles for modern data
protection, from both, legal and technical viewpoints. Regulations such as the
GDPR, therefore, require specific transparency information to be provided
including, e.g., purpose specifications, storage periods, or legal bases for
personal data processing. However, it has repeatedly been shown that all too
often, this information is practically hidden in legalese privacy policies,
hindering data subjects from exercising their rights. This paper presents a
novel approach to enable large-scale transparency information analysis across
service providers, leveraging machine-readable formats and graph data science
methods. More specifically, we propose a general approach for building a
transparency analysis platform (TAP) that is used to identify data transfers
empirically, provide evidence-based analyses of sharing clusters of more than
70 real-world data controllers, or even to simulate network dynamics using
synthetic transparency information for large-scale data-sharing scenarios. We
provide the general approach for advanced transparency information analysis, an
open source architecture and implementation in the form of a queryable analysis
platform, and versatile analysis examples. These contributions pave the way for
more transparent data processing for data subjects, and evidence-based
enforcement processes for data protection authorities. Future work can build
upon our contributions to gain more insights into so-far hidden data-sharing
practices.
Related papers
- AI data transparency: an exploration through the lens of AI incidents [2.255682336735152]
This research explores the status of public documentation about data practices within AI systems generating public concern.
We highlight a need to develop systematic ways of monitoring AI data transparency that account for the diversity of AI system types.
arXiv Detail & Related papers (2024-09-05T07:23:30Z) - Extending Business Process Management for Regulatory Transparency [0.0]
We bridge the gap between business processes and application systems by providing a plug-in extension to BPMN featuring regulatory transparency information.
We leverage process mining techniques to discover and analyze personal data flows in business processes.
arXiv Detail & Related papers (2024-06-14T12:08:34Z) - Lazy Data Practices Harm Fairness Research [49.02318458244464]
We present a comprehensive analysis of fair ML datasets, demonstrating how unreflective practices hinder the reach and reliability of algorithmic fairness findings.
Our analyses identify three main areas of concern: (1) a textbflack of representation for certain protected attributes in both data and evaluations; (2) the widespread textbf of minorities during data preprocessing; and (3) textbfopaque data processing threatening the generalization of fairness research.
This study underscores the need for a critical reevaluation of data practices in fair ML and offers directions to improve both the sourcing and usage of datasets.
arXiv Detail & Related papers (2024-04-26T09:51:24Z) - Securing Data Platforms: Strategic Masking Techniques for Privacy and
Security for B2B Enterprise Data [0.0]
Business-to-business (B2B) enterprises are increasingly constructing data platforms.
It has become critical to design these data platforms with mechanisms that inherently support data privacy and security.
Data masking stands out as a vital feature of data platform architecture.
arXiv Detail & Related papers (2023-12-06T05:04:37Z) - Towards Generalizable Data Protection With Transferable Unlearnable
Examples [50.628011208660645]
We present a novel, generalizable data protection method by generating transferable unlearnable examples.
To the best of our knowledge, this is the first solution that examines data privacy from the perspective of data distribution.
arXiv Detail & Related papers (2023-05-18T04:17:01Z) - Enabling Versatile Privacy Interfaces Using Machine-Readable
Transparency Information [0.0]
We argue that privacy shall incorporate the context of display, personal preferences, and individual competences of data subjects.
We provide a general model of how transparency information can be provided from a data controller to data subjects.
We show how transparency can be enhanced using machine-readable transparency information and how data controllers can meet respective regulatory obligations.
arXiv Detail & Related papers (2023-02-21T20:40:26Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Trustworthy Transparency by Design [57.67333075002697]
We propose a transparency framework for software design, incorporating research on user trust and experience.
Our framework enables developing software that incorporates transparency in its design.
arXiv Detail & Related papers (2021-03-19T12:34:01Z) - Explainable Patterns: Going from Findings to Insights to Support Data
Analytics Democratization [60.18814584837969]
We present Explainable Patterns (ExPatt), a new framework to support lay users in exploring and creating data storytellings.
ExPatt automatically generates plausible explanations for observed or selected findings using an external (textual) source of information.
arXiv Detail & Related papers (2021-01-19T16:13:44Z) - TILT: A GDPR-Aligned Transparency Information Language and Toolkit for
Practical Privacy Engineering [0.0]
TILT is a transparency information language and toolkit designed to represent and process transparency information.
We provide a detailed analysis of transparency obligations to identify the required for a formal transparency language.
On this basis, we specify our formal language and present a respective, fully implemented toolkit.
arXiv Detail & Related papers (2020-12-18T18:45:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.