New metrics for analyzing continual learners
- URL: http://arxiv.org/abs/2309.00462v1
- Date: Fri, 1 Sep 2023 13:53:33 GMT
- Title: New metrics for analyzing continual learners
- Authors: Nicolas Michel, Giovanni Chierchia, Romain Negrel, Jean-Fran\c{c}ois
Bercher, Toshihiko Yamasaki
- Abstract summary: Continual Learning (CL) poses challenges to standard learning algorithms.
This stability-plasticity dilemma remains central to CL and multiple metrics have been proposed to adequately measure stability and plasticity separately.
We propose new metrics that account for the task's increasing difficulty.
- Score: 27.868967961503962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks have shown remarkable performance when trained on
independent and identically distributed data from a fixed set of classes.
However, in real-world scenarios, it can be desirable to train models on a
continuous stream of data where multiple classification tasks are presented
sequentially. This scenario, known as Continual Learning (CL) poses challenges
to standard learning algorithms which struggle to maintain knowledge of old
tasks while learning new ones. This stability-plasticity dilemma remains
central to CL and multiple metrics have been proposed to adequately measure
stability and plasticity separately. However, none considers the increasing
difficulty of the classification task, which inherently results in performance
loss for any model. In that sense, we analyze some limitations of current
metrics and identify the presence of setup-induced forgetting. Therefore, we
propose new metrics that account for the task's increasing difficulty. Through
experiments on benchmark datasets, we demonstrate that our proposed metrics can
provide new insights into the stability-plasticity trade-off achieved by models
in the continual learning environment.
Related papers
- Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Federated Continual Learning Goes Online: Uncertainty-Aware Memory Management for Vision Tasks and Beyond [13.867793835583463]
We propose an uncertainty-aware memory-based approach to solve catastrophic forgetting.
We retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach.
arXiv Detail & Related papers (2024-05-29T09:29:39Z) - Improving Data-aware and Parameter-aware Robustness for Continual Learning [3.480626767752489]
This paper analyzes that this insufficiency arises from the ineffective handling of outliers.
We propose a Robust Continual Learning (RCL) method to address this issue.
The proposed method effectively maintains robustness and achieves new state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2024-05-27T11:21:26Z) - Dynamic Sub-graph Distillation for Robust Semi-supervised Continual
Learning [52.046037471678005]
We focus on semi-supervised continual learning (SSCL), where the model progressively learns from partially labeled data with unknown categories.
We propose a novel approach called Dynamic Sub-Graph Distillation (DSGD) for semi-supervised continual learning.
arXiv Detail & Related papers (2023-12-27T04:40:12Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Mitigating Catastrophic Forgetting in Task-Incremental Continual
Learning with Adaptive Classification Criterion [50.03041373044267]
We propose a Supervised Contrastive learning framework with adaptive classification criterion for Continual Learning.
Experiments show that CFL achieves state-of-the-art performance and has a stronger ability to overcome compared with the classification baselines.
arXiv Detail & Related papers (2023-05-20T19:22:40Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - On Generalizing Beyond Domains in Cross-Domain Continual Learning [91.56748415975683]
Deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task.
Our proposed approach learns new tasks under domain shift with accuracy boosts up to 10% on challenging datasets such as DomainNet and OfficeHome.
arXiv Detail & Related papers (2022-03-08T09:57:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.