Impact of Image Context for Single Deep Learning Face Morphing Attack
Detection
- URL: http://arxiv.org/abs/2309.00549v1
- Date: Fri, 1 Sep 2023 15:57:24 GMT
- Title: Impact of Image Context for Single Deep Learning Face Morphing Attack
Detection
- Authors: Joana Pimenta, Iurii Medvedev, Nuno Gon\c{c}alves
- Abstract summary: Face recognition systems (FRSs) have become prevalent, but they are still vulnerable to image manipulation techniques such as face morphing attacks.
This study investigates the impact of the alignment settings of input images on deep learning face morphing detection performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increase in security concerns due to technological advancements has led
to the popularity of biometric approaches that utilize physiological or
behavioral characteristics for enhanced recognition. Face recognition systems
(FRSs) have become prevalent, but they are still vulnerable to image
manipulation techniques such as face morphing attacks. This study investigates
the impact of the alignment settings of input images on deep learning face
morphing detection performance. We analyze the interconnections between the
face contour and image context and suggest optimal alignment conditions for
face morphing detection.
Related papers
- Quadruplet Loss For Improving the Robustness to Face Morphing Attacks [0.0]
Face Recognition Systems are vulnerable to sophisticated attacks, notably face morphing techniques.
We introduce a novel quadruplet loss function for increasing the robustness of face recognition systems against morphing attacks.
arXiv Detail & Related papers (2024-02-22T16:10:39Z) - TetraLoss: Improving the Robustness of Face Recognition against Morphing
Attacks [7.092869001331781]
Face recognition systems are widely deployed in high-security applications.
Digital manipulations, such as face morphing, pose a security threat to face recognition systems.
We present a novel method for adapting deep learning-based face recognition systems to be more robust against face morphing attacks.
arXiv Detail & Related papers (2024-01-21T21:04:05Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - Fused Classification For Differential Face Morphing Detection [0.0]
Face morphing, a presentation attack technique, poses significant security risks to face recognition systems.
Traditional methods struggle to detect morphing attacks, which involve blending multiple face images.
We propose an extended approach based on fused classification method for no-reference scenario.
arXiv Detail & Related papers (2023-09-01T16:14:29Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
StyleGAN-based approaches to face morphing are among the leading techniques.
We propose a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods.
arXiv Detail & Related papers (2023-02-18T19:09:11Z) - MorDeephy: Face Morphing Detection Via Fused Classification [0.0]
We introduce a novel deep learning strategy for a single image face morphing detection.
It is directed onto learning the deep facial features, which carry information about the authenticity of these features.
Our method, which we call MorDeephy, achieved the state of the art performance and demonstrated a prominent ability for generalising the task of morphing detection to unseen scenarios.
arXiv Detail & Related papers (2022-08-05T11:39:22Z) - Psychophysical Evaluation of Human Performance in Detecting Digital Face
Image Manipulations [14.63266615325105]
This work introduces a web-based, remote visual discrimination experiment on the basis of principles adopted from the field of psychophysics.
We examine human proficiency in detecting different types of digitally manipulated face images, specifically face swapping, morphing, and retouching.
arXiv Detail & Related papers (2022-01-28T12:45:33Z) - Facial Expressions as a Vulnerability in Face Recognition [73.85525896663371]
This work explores facial expression bias as a security vulnerability of face recognition systems.
We present a comprehensive analysis of how facial expression bias impacts the performance of face recognition technologies.
arXiv Detail & Related papers (2020-11-17T18:12:41Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
Face anti-spoofing is the key to preventing security breaches in biometric recognition applications.
Deep learning method using RGB and infrared images demands a large amount of training data for new attacks.
We present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face.
arXiv Detail & Related papers (2020-03-18T03:04:03Z) - On the Robustness of Face Recognition Algorithms Against Attacks and
Bias [78.68458616687634]
Face recognition algorithms have demonstrated very high recognition performance, suggesting suitability for real world applications.
Despite the enhanced accuracies, robustness of these algorithms against attacks and bias has been challenged.
This paper summarizes different ways in which the robustness of a face recognition algorithm is challenged.
arXiv Detail & Related papers (2020-02-07T18:21:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.