TExplain: Explaining Learned Visual Features via Pre-trained (Frozen) Language Models
- URL: http://arxiv.org/abs/2309.00733v4
- Date: Thu, 2 May 2024 03:28:00 GMT
- Title: TExplain: Explaining Learned Visual Features via Pre-trained (Frozen) Language Models
- Authors: Saeid Asgari Taghanaki, Aliasghar Khani, Ali Saheb Pasand, Amir Khasahmadi, Aditya Sanghi, Karl D. D. Willis, Ali Mahdavi-Amiri,
- Abstract summary: We propose a novel method that leverages the capabilities of language models to interpret the learned features of pre-trained image classifiers.
Our approach generates a vast number of sentences to explain the features learned by the classifier for a given image.
Our method, for the first time, utilizes these frequent words corresponding to a visual representation to provide insights into the decision-making process.
- Score: 14.019349267520541
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpreting the learned features of vision models has posed a longstanding challenge in the field of machine learning. To address this issue, we propose a novel method that leverages the capabilities of language models to interpret the learned features of pre-trained image classifiers. Our method, called TExplain, tackles this task by training a neural network to establish a connection between the feature space of image classifiers and language models. Then, during inference, our approach generates a vast number of sentences to explain the features learned by the classifier for a given image. These sentences are then used to extract the most frequent words, providing a comprehensive understanding of the learned features and patterns within the classifier. Our method, for the first time, utilizes these frequent words corresponding to a visual representation to provide insights into the decision-making process of the independently trained classifier, enabling the detection of spurious correlations, biases, and a deeper comprehension of its behavior. To validate the effectiveness of our approach, we conduct experiments on diverse datasets, including ImageNet-9L and Waterbirds. The results demonstrate the potential of our method to enhance the interpretability and robustness of image classifiers.
Related papers
- DILLEMA: Diffusion and Large Language Models for Multi-Modal Augmentation [0.13124513975412253]
We present a novel framework for testing vision neural networks that leverages Large Language Models and control-conditioned Diffusion Models.
Our approach begins by translating images into detailed textual descriptions using a captioning model.
These descriptions are then used to produce new test images through a text-to-image diffusion process.
arXiv Detail & Related papers (2025-02-05T16:35:42Z) - Beyond-Labels: Advancing Open-Vocabulary Segmentation With Vision-Language Models [0.0]
Self-supervised learning can resolve numerous image or linguistic processing problems when effectively trained.
This study investigated simple yet efficient methods for adapting previously learned foundation models for semantic segmentation tasks.
Our research proposed "Beyond-Labels," a lightweight transformer-based fusion module that uses a handful of image segmentation data to fuse frozen image representations with language concepts.
arXiv Detail & Related papers (2025-01-28T07:49:52Z) - Pixel Sentence Representation Learning [67.4775296225521]
In this work, we conceptualize the learning of sentence-level textual semantics as a visual representation learning process.
We employ visually-grounded text perturbation methods like typos and word order shuffling, resonating with human cognitive patterns, and enabling perturbation to be perceived as continuous.
Our approach is further bolstered by large-scale unsupervised topical alignment training and natural language inference supervision.
arXiv Detail & Related papers (2024-02-13T02:46:45Z) - Representing visual classification as a linear combination of words [0.0]
We present an explainability strategy that uses a vision-language model to identify language-based descriptors of a visual classification task.
By leveraging a pre-trained joint embedding space between images and text, our approach estimates a new classification task as a linear combination of words.
We find that the resulting descriptors largely align with clinical knowledge despite a lack of domain-specific language training.
arXiv Detail & Related papers (2023-11-18T02:00:20Z) - Seeing in Words: Learning to Classify through Language Bottlenecks [59.97827889540685]
Humans can explain their predictions using succinct and intuitive descriptions.
We show that a vision model whose feature representations are text can effectively classify ImageNet images.
arXiv Detail & Related papers (2023-06-29T00:24:42Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
This work presents new methods to employ visual information as assistant signals to general NLP tasks.
For each sentence, we first retrieve a flexible number of images either from a light topic-image lookup table extracted over the existing sentence-image pairs.
Then, the text and images are encoded by a Transformer encoder and convolutional neural network, respectively.
arXiv Detail & Related papers (2023-01-09T13:54:11Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
We present a new framework for dense prediction by implicitly and explicitly leveraging the pre-trained knowledge from CLIP.
Specifically, we convert the original image-text matching problem in CLIP to a pixel-text matching problem and use the pixel-text score maps to guide the learning of dense prediction models.
Our method is model-agnostic, which can be applied to arbitrary dense prediction systems and various pre-trained visual backbones.
arXiv Detail & Related papers (2021-12-02T18:59:32Z) - This is not the Texture you are looking for! Introducing Novel
Counterfactual Explanations for Non-Experts using Generative Adversarial
Learning [59.17685450892182]
counterfactual explanation systems try to enable a counterfactual reasoning by modifying the input image.
We present a novel approach to generate such counterfactual image explanations based on adversarial image-to-image translation techniques.
Our results show that our approach leads to significantly better results regarding mental models, explanation satisfaction, trust, emotions, and self-efficacy than two state-of-the art systems.
arXiv Detail & Related papers (2020-12-22T10:08:05Z) - Learning Representations by Predicting Bags of Visual Words [55.332200948110895]
Self-supervised representation learning targets to learn convnet-based image representations from unlabeled data.
Inspired by the success of NLP methods in this area, in this work we propose a self-supervised approach based on spatially dense image descriptions.
arXiv Detail & Related papers (2020-02-27T16:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.