Large AI Model Empowered Multimodal Semantic Communications
- URL: http://arxiv.org/abs/2309.01249v2
- Date: Sun, 4 Aug 2024 12:34:29 GMT
- Title: Large AI Model Empowered Multimodal Semantic Communications
- Authors: Feibo Jiang, Li Dong, Yubo Peng, Kezhi Wang, Kun Yang, Cunhua Pan, Xiaohu You,
- Abstract summary: We propose a Large AI Model-based Multimodal SC (LAMMSC) framework.
We first present the Conditional-based Multimodal Alignment (MMA) that enables the transformation between multimodal and unimodal data.
Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery.
Finally, we apply the Generative adversarial network-based channel Estimation (CGE) for estimating the wireless channel state information.
- Score: 48.73159237649128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal signals, including text, audio, image, and video, can be integrated into Semantic Communication (SC) systems to provide an immersive experience with low latency and high quality at the semantic level. However, the multimodal SC has several challenges, including data heterogeneity, semantic ambiguity, and signal distortion during transmission. Recent advancements in large AI models, particularly in the Multimodal Language Model (MLM) and Large Language Model (LLM), offer potential solutions for addressing these issues. To this end, we propose a Large AI Model-based Multimodal SC (LAM-MSC) framework, where we first present the MLM-based Multimodal Alignment (MMA) that utilizes the MLM to enable the transformation between multimodal and unimodal data while preserving semantic consistency. Then, a personalized LLM-based Knowledge Base (LKB) is proposed, which allows users to perform personalized semantic extraction or recovery through the LLM. This effectively addresses the semantic ambiguity. Finally, we apply the Conditional Generative adversarial network-based channel Estimation (CGE) for estimating the wireless channel state information. This approach effectively mitigates the impact of fading channels in SC. Finally, we conduct simulations that demonstrate the superior performance of the LAM-MSC framework.
Related papers
- Towards Robust Multimodal Sentiment Analysis with Incomplete Data [20.75292807497547]
We present an innovative Language-dominated Noise-resistant Learning Network (LNLN) to achieve robust Multimodal Sentiment Analysis (MSA)
LNLN features a dominant modality correction (DMC) module and dominant modality based multimodal learning (DMML) module, which enhances the model's robustness across various noise scenarios.
arXiv Detail & Related papers (2024-09-30T07:14:31Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMA is a generalizable, highly efficient, and modular modality-fusion framework for video reasoning.
We propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy.
We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including VideoQA and Video-Audio/3D/Touch/Thermal QA.
arXiv Detail & Related papers (2024-02-08T18:27:22Z) - Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback [38.708690624594794]
Video and text multimodal alignment remains challenging, primarily due to the deficient volume and quality of multimodal instruction-tune data.
We present a novel alignment strategy that employs multimodal AI system to oversee itself called Reinforcement Learning from AI Feedback (RLAIF)
In specific, we propose context-aware reward modeling by providing detailed video descriptions as context during the generation of preference feedback.
arXiv Detail & Related papers (2024-02-06T06:27:40Z) - MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples [63.78384552789171]
This paper introduces Multi-Modal In-Context Tuning (MMICT), a novel multi-modal fine-tuning paradigm.
We propose the Multi-Modal Hub (M-Hub), a unified module that captures various multi-modal features according to different inputs and objectives.
Based on M-Hub, MMICT enables MM-LLMs to learn from in-context visual-guided textual features and subsequently generate outputs conditioned on the textual-guided visual features.
arXiv Detail & Related papers (2023-12-11T13:11:04Z) - AnyMAL: An Efficient and Scalable Any-Modality Augmented Language Model [33.072967177313025]
We present Any-Modality Augmented Language Model (AnyMAL), a unified model that reasons over diverse input modality signals.
AnyMAL inherits the powerful text-based reasoning abilities of the state-of-the-art LLMs including LLaMA-2 (70B)
We conduct comprehensive empirical analysis comprising both human and automatic evaluations, and demonstrate state-of-the-art performance on various multimodal tasks.
arXiv Detail & Related papers (2023-09-27T22:50:51Z) - NExT-GPT: Any-to-Any Multimodal LLM [75.5656492989924]
We present an end-to-end general-purpose any-to-any MM-LLM system, NExT-GPT.
We connect an LLM with multimodal adaptors and different diffusion decoders, enabling NExT-GPT to perceive inputs and generate outputs in arbitrary combinations of text, images, videos, and audio.
We introduce a modality-switching instruction tuning (MosIT) and manually curate a high-quality dataset for MosIT, based on which NExT-GPT is empowered with complex cross-modal semantic understanding and content generation.
arXiv Detail & Related papers (2023-09-11T15:02:25Z) - Enabling the Wireless Metaverse via Semantic Multiverse Communication [82.47169682083806]
Metaverse over wireless networks is an emerging use case of the sixth generation (6G) wireless systems.
We propose a novel semantic communication framework by decomposing the metaverse into human/machine agent-specific semantic multiverses (SMs)
An SM stored at each agent comprises a semantic encoder and a generator, leveraging recent advances in generative artificial intelligence (AI)
arXiv Detail & Related papers (2022-12-13T21:21:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.