Interactive Graph Convolutional Filtering
- URL: http://arxiv.org/abs/2309.01453v1
- Date: Mon, 4 Sep 2023 09:02:31 GMT
- Title: Interactive Graph Convolutional Filtering
- Authors: Jin Zhang, Defu Lian, Hong Xie, Yawen Li, Enhong Chen
- Abstract summary: Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
- Score: 79.34979767405979
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive Recommender Systems (IRS) have been increasingly used in various
domains, including personalized article recommendation, social media, and
online advertising. However, IRS faces significant challenges in providing
accurate recommendations under limited observations, especially in the context
of interactive collaborative filtering. These problems are exacerbated by the
cold start problem and data sparsity problem. Existing Multi-Armed Bandit
methods, despite their carefully designed exploration strategies, often
struggle to provide satisfactory results in the early stages due to the lack of
interaction data. Furthermore, these methods are computationally intractable
when applied to non-linear models, limiting their applicability. To address
these challenges, we propose a novel method, the Interactive Graph
Convolutional Filtering model. Our proposed method extends interactive
collaborative filtering into the graph model to enhance the performance of
collaborative filtering between users and items. We incorporate variational
inference techniques to overcome the computational hurdles posed by non-linear
models. Furthermore, we employ Bayesian meta-learning methods to effectively
address the cold-start problem and derive theoretical regret bounds for our
proposed method, ensuring a robust performance guarantee. Extensive
experimental results on three real-world datasets validate our method and
demonstrate its superiority over existing baselines.
Related papers
- Geometric Collaborative Filtering with Convergence [5.70129120026477]
We introduce a notion of generalization gap in collaborative filtering and analyze this with respect to latent collaborative filtering models.
We present a geometric upper bound that gives rise to loss functions, and a way to meaningfully utilize the geometry of item-metadata to improve recommendations.
We show experimentally that our proposed GeoCF algorithm can outperform all existing methods on the Movielens20M and Netflix datasets.
arXiv Detail & Related papers (2024-10-04T01:04:41Z) - Coordination Failure in Cooperative Offline MARL [3.623224034411137]
We focus on coordination failure and investigate the role of joint actions in multi-agent policy gradients with offline data.
By using two-player games as an analytical tool, we demonstrate a simple yet overlooked failure mode of BRUD-based algorithms.
We propose an approach to mitigate such failure, by prioritising samples from the dataset based on joint-action similarity.
arXiv Detail & Related papers (2024-07-01T14:51:29Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
We propose an adaptive Graph Attention Sampling with the Edges Fusion framework to solve vehicle routing problems.
Our proposed model outperforms the existing methods by 2.08%-6.23% and shows stronger generalization ability.
arXiv Detail & Related papers (2024-05-21T03:33:07Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Hypergraph Contrastive Collaborative Filtering [44.8586906335262]
We propose a new self-supervised recommendation framework Hypergraph Contrastive Collaborative Filtering (HCCF)
HCCF captures local and global collaborative relations with a hypergraph-enhanced cross-view contrastive learning architecture.
Our model effectively integrates the hypergraph structure encoding with self-supervised learning to reinforce the representation quality of recommender systems.
arXiv Detail & Related papers (2022-04-26T10:06:04Z) - Broad Recommender System: An Efficient Nonlinear Collaborative Filtering
Approach [56.12815715932561]
We propose a new broad recommender system called Broad Collaborative Filtering (BroadCF)
Instead of Deep Neural Networks (DNNs), Broad Learning System (BLS) is used as a mapping function to learn the complex nonlinear relationships between users and items.
Extensive experiments conducted on seven benchmark datasets have confirmed the effectiveness of the proposed BroadCF algorithm.
arXiv Detail & Related papers (2022-04-20T01:25:08Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - Similarity-based data mining for online domain adaptation of a sonar ATR
system [2.064612766965483]
We propose an online fine-tuning of the Automatic Target Recognition algorithm using a novel data-selection method.
Our proposed data-mining approach relies on visual similarity and outperforms the traditionally employed hard-mining methods.
arXiv Detail & Related papers (2020-09-16T09:07:54Z) - Differentiable Causal Discovery from Interventional Data [141.41931444927184]
We propose a theoretically-grounded method based on neural networks that can leverage interventional data.
We show that our approach compares favorably to the state of the art in a variety of settings.
arXiv Detail & Related papers (2020-07-03T15:19:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.