An Empirical Analysis for Zero-Shot Multi-Label Classification on
COVID-19 CT Scans and Uncurated Reports
- URL: http://arxiv.org/abs/2309.01740v2
- Date: Wed, 6 Sep 2023 09:34:53 GMT
- Title: An Empirical Analysis for Zero-Shot Multi-Label Classification on
COVID-19 CT Scans and Uncurated Reports
- Authors: Ethan Dack, Lorenzo Brigato, Matthew McMurray, Matthias Fontanellaz,
Thomas Frauenfelder, Hanno Hoppe, Aristomenis Exadaktylos, Thomas Geiser,
Manuela Funke-Chambour, Andreas Christe, Lukas Ebner, Stavroula Mougiakakou
- Abstract summary: pandemic resulted in vast repositories of unstructured data, including radiology reports, due to increased medical examinations.
Previous research on automated diagnosis of COVID-19 primarily focuses on X-ray images, despite their lower precision compared to computed tomography (CT) scans.
In this work, we leverage unstructured data from a hospital and harness the fine-grained details offered by CT scans to perform zero-shot multi-label classification based on contrastive visual language learning.
- Score: 0.5527944417831603
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The pandemic resulted in vast repositories of unstructured data, including
radiology reports, due to increased medical examinations. Previous research on
automated diagnosis of COVID-19 primarily focuses on X-ray images, despite
their lower precision compared to computed tomography (CT) scans. In this work,
we leverage unstructured data from a hospital and harness the fine-grained
details offered by CT scans to perform zero-shot multi-label classification
based on contrastive visual language learning. In collaboration with human
experts, we investigate the effectiveness of multiple zero-shot models that aid
radiologists in detecting pulmonary embolisms and identifying intricate lung
details like ground glass opacities and consolidations. Our empirical analysis
provides an overview of the possible solutions to target such fine-grained
tasks, so far overlooked in the medical multimodal pretraining literature. Our
investigation promises future advancements in the medical image analysis
community by addressing some challenges associated with unstructured data and
fine-grained multi-label classification.
Related papers
- Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - Beyond Images: An Integrative Multi-modal Approach to Chest X-Ray Report
Generation [47.250147322130545]
Image-to-text radiology report generation aims to automatically produce radiology reports that describe the findings in medical images.
Most existing methods focus solely on the image data, disregarding the other patient information accessible to radiologists.
We present a novel multi-modal deep neural network framework for generating chest X-rays reports by integrating structured patient data, such as vital signs and symptoms, alongside unstructured clinical notes.
arXiv Detail & Related papers (2023-11-18T14:37:53Z) - Enhancing COVID-19 Severity Analysis through Ensemble Methods [13.792760290422185]
This paper presents a domain knowledge-based pipeline for extracting regions of infection in COVID-19 patients.
The severity of the infection is then classified into different categories using an ensemble of three machine-learning models.
The proposed system was evaluated on a validation dataset in the AI-Enabled Medical Image Analysis Workshop and COVID-19 Diagnosis Competition.
arXiv Detail & Related papers (2023-03-13T13:59:47Z) - Improving Chest X-Ray Classification by RNN-based Patient Monitoring [0.34998703934432673]
We analyze how information about diagnosis can improve CNN-based image classification models.
We show that a model trained on additional patient history information outperforms a model trained without the information by a significant margin.
arXiv Detail & Related papers (2022-10-28T11:47:15Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis.
Some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise.
Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal.
arXiv Detail & Related papers (2022-08-04T22:14:18Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - Attention U-Net Based Adversarial Architectures for Chest X-ray Lung
Segmentation [0.0]
We present a novel deep learning approach for lung segmentation, a basic, but arduous task in the diagnostic pipeline.
Our method uses state-of-the-art fully convolutional neural networks in conjunction with an adversarial critic model.
It generalized well to CXR images of unseen datasets with different patient profiles, achieving a final DSCR of 97.5% on the JSRT dataset.
arXiv Detail & Related papers (2020-03-23T14:45:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.