Accuracy and Consistency of Space-based Vegetation Height Maps for
Forest Dynamics in Alpine Terrain
- URL: http://arxiv.org/abs/2309.01797v1
- Date: Mon, 4 Sep 2023 20:23:57 GMT
- Title: Accuracy and Consistency of Space-based Vegetation Height Maps for
Forest Dynamics in Alpine Terrain
- Authors: Yuchang Jiang, Marius R\"uetschi, Vivien Sainte Fare Garnot, Mauro
Marty, Konrad Schindler, Christian Ginzler, Jan D. Wegner
- Abstract summary: The Swiss National Forest Inventory (NFI) provides countrywide vegetation height maps at a spatial resolution of 0.5 m.
This can be improved by using spaceborne remote sensing and deep learning to generate large-scale vegetation height maps.
We generate annual, countrywide vegetation height maps at a 10-meter ground sampling distance for the years 2017 to 2020 based on Sentinel-2 satellite imagery.
- Score: 18.23260742076316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring and understanding forest dynamics is essential for environmental
conservation and management. This is why the Swiss National Forest Inventory
(NFI) provides countrywide vegetation height maps at a spatial resolution of
0.5 m. Its long update time of 6 years, however, limits the temporal analysis
of forest dynamics. This can be improved by using spaceborne remote sensing and
deep learning to generate large-scale vegetation height maps in a
cost-effective way. In this paper, we present an in-depth analysis of these
methods for operational application in Switzerland. We generate annual,
countrywide vegetation height maps at a 10-meter ground sampling distance for
the years 2017 to 2020 based on Sentinel-2 satellite imagery. In comparison to
previous works, we conduct a large-scale and detailed stratified analysis
against a precise Airborne Laser Scanning reference dataset. This stratified
analysis reveals a close relationship between the model accuracy and the
topology, especially slope and aspect. We assess the potential of deep
learning-derived height maps for change detection and find that these maps can
indicate changes as small as 250 $m^2$. Larger-scale changes caused by a winter
storm are detected with an F1-score of 0.77. Our results demonstrate that
vegetation height maps computed from satellite imagery with deep learning are a
valuable, complementary, cost-effective source of evidence to increase the
temporal resolution for national forest assessments.
Related papers
- Estimating Canopy Height at Scale [15.744009072839425]
We propose a framework for global-scale canopy height estimation based on satellite data.
A comparison between predictions and ground-truth labels yields an MAE / RMSE of 2.43 / 4.73 (meters) overall and 4.45 / 6.72 (meters) for trees taller than five meters.
arXiv Detail & Related papers (2024-06-03T07:53:38Z) - Estimation of forest height and biomass from open-access multi-sensor
satellite imagery and GEDI Lidar data: high-resolution maps of metropolitan
France [0.0]
This study uses a machine learning approach that was previously developed to produce local maps of forest parameters.
We used the GEDI Lidar mission as reference height data, and the satellite images from Sentinel-1, Sentinel-2 and ALOS-2 PALSA-2 to estimate forest height.
The height map is then derived into volume and aboveground biomass (AGB) using allometric equations.
arXiv Detail & Related papers (2023-10-23T07:58:49Z) - Boosting 3-DoF Ground-to-Satellite Camera Localization Accuracy via
Geometry-Guided Cross-View Transformer [66.82008165644892]
We propose a method to increase the accuracy of a ground camera's location and orientation by estimating the relative rotation and translation between the ground-level image and its matched/retrieved satellite image.
Experimental results demonstrate that our method significantly outperforms the state-of-the-art.
arXiv Detail & Related papers (2023-07-16T11:52:27Z) - Vision Transformers, a new approach for high-resolution and large-scale
mapping of canopy heights [50.52704854147297]
We present a new vision transformer (ViT) model optimized with a classification (discrete) and a continuous loss function.
This model achieves better accuracy than previously used convolutional based approaches (ConvNets) optimized with only a continuous loss function.
arXiv Detail & Related papers (2023-04-22T22:39:03Z) - Very high resolution canopy height maps from RGB imagery using
self-supervised vision transformer and convolutional decoder trained on
Aerial Lidar [14.07306593230776]
This paper presents the first high-resolution canopy height map concurrently produced for multiple sub-national jurisdictions.
The maps are generated by the extraction of features from a self-supervised model trained on Maxar imagery from 2017 to 2020.
We also introduce a post-processing step using a convolutional network trained on GEDI observations.
arXiv Detail & Related papers (2023-04-14T15:52:57Z) - ViKiNG: Vision-Based Kilometer-Scale Navigation with Geographic Hints [94.60414567852536]
Long-range navigation requires both planning and reasoning about local traversability.
We propose a learning-based approach that integrates learning and planning.
ViKiNG can leverage its image-based learned controller and goal-directed to navigate to goals up to 3 kilometers away.
arXiv Detail & Related papers (2022-02-23T02:14:23Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Rethinking Localization Map: Towards Accurate Object Perception with
Self-Enhancement Maps [78.2581910688094]
This work introduces a novel self-enhancement method to harvest accurate object localization maps and object boundaries with only category labels as supervision.
In particular, the proposed Self-Enhancement Maps achieve the state-of-the-art localization accuracy of 54.88% on ILSVRC.
arXiv Detail & Related papers (2020-06-09T12:35:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.