Black-Box Attacks against Signed Graph Analysis via Balance Poisoning
- URL: http://arxiv.org/abs/2309.02396v1
- Date: Tue, 5 Sep 2023 17:09:38 GMT
- Title: Black-Box Attacks against Signed Graph Analysis via Balance Poisoning
- Authors: Jialong Zhou, Yuni Lai, Jian Ren, Kai Zhou,
- Abstract summary: Signed graph neural networks (SGNNs) are commonly employed to predict link signs in such graphs.
We propose a novel black-box attack called balance-attack that aims to decrease the balance degree of the signed graphs.
Our research contributes to a better understanding of the limitations and resilience of robust models when facing attacks on SGNNs.
- Score: 8.680110107377953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Signed graphs are well-suited for modeling social networks as they capture both positive and negative relationships. Signed graph neural networks (SGNNs) are commonly employed to predict link signs (i.e., positive and negative) in such graphs due to their ability to handle the unique structure of signed graphs. However, real-world signed graphs are vulnerable to malicious attacks by manipulating edge relationships, and existing adversarial graph attack methods do not consider the specific structure of signed graphs. SGNNs often incorporate balance theory to effectively model the positive and negative links. Surprisingly, we find that the balance theory that they rely on can ironically be exploited as a black-box attack. In this paper, we propose a novel black-box attack called balance-attack that aims to decrease the balance degree of the signed graphs. We present an efficient heuristic algorithm to solve this NP-hard optimization problem. We conduct extensive experiments on five popular SGNN models and four real-world datasets to demonstrate the effectiveness and wide applicability of our proposed attack method. By addressing these challenges, our research contributes to a better understanding of the limitations and resilience of robust models when facing attacks on SGNNs. This work contributes to enhancing the security and reliability of signed graph analysis in social network modeling. Our PyTorch implementation of the attack is publicly available on GitHub: https://github.com/JialongZhou666/Balance-Attack.git.
Related papers
- Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
Recent studies show that Graph Neural Networks are vulnerable and easily fooled by small perturbations.
In this work, we focus on the emerging but critical attack, namely, Graph Injection Attack.
We propose a general defense framework CHAGNN against GIA through cooperative homophilous augmentation of graph data and model.
arXiv Detail & Related papers (2022-11-15T11:44:31Z) - Sparse Vicious Attacks on Graph Neural Networks [3.246307337376473]
This work focuses on a specific, white-box attack to GNN-based link prediction models.
We propose SAVAGE, a novel framework and a method to mount this type of link prediction attacks.
Experiments conducted on real-world and synthetic datasets demonstrate that adversarial attacks implemented through SAVAGE indeed achieve high attack success rate.
arXiv Detail & Related papers (2022-09-20T12:51:24Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
We study model inversion attacks against Graph Neural Networks (GNNs)
In this paper, we present GraphMI to infer the private training graph data.
Our experimental results show that such defenses are not sufficiently effective and call for more advanced defenses against privacy attacks.
arXiv Detail & Related papers (2022-09-16T09:13:43Z) - Bandits for Structure Perturbation-based Black-box Attacks to Graph
Neural Networks with Theoretical Guarantees [60.61846004535707]
Graph neural networks (GNNs) have achieved state-of-the-art performance in many graph-based tasks.
An attacker can mislead GNN models by slightly perturbing the graph structure.
In this paper, we consider black-box attacks to GNNs with structure perturbation as well as with theoretical guarantees.
arXiv Detail & Related papers (2022-05-07T04:17:25Z) - A Hard Label Black-box Adversarial Attack Against Graph Neural Networks [25.081630882605985]
We conduct a systematic study on adversarial attacks against GNNs for graph classification via perturbing the graph structure.
We formulate our attack as an optimization problem, whose objective is to minimize the number of edges to be perturbed in a graph while maintaining the high attack success rate.
Our experimental results on three real-world datasets demonstrate that our attack can effectively attack representative GNNs for graph classification with less queries and perturbations.
arXiv Detail & Related papers (2021-08-21T14:01:34Z) - GraphAttacker: A General Multi-Task GraphAttack Framework [4.218118583619758]
Graph Neural Networks (GNNs) have been successfully exploited in graph analysis tasks in many real-world applications.
adversarial samples generated by attackers, which achieved great attack performance with almost imperceptible perturbations.
We propose GraphAttacker, a novel generic graph attack framework that can flexibly adjust the structures and the attack strategies according to the graph analysis tasks.
arXiv Detail & Related papers (2021-01-18T03:06:41Z) - Adversarial Attack on Large Scale Graph [58.741365277995044]
Recent studies have shown that graph neural networks (GNNs) are vulnerable against perturbations due to lack of robustness.
Currently, most works on attacking GNNs are mainly using gradient information to guide the attack and achieve outstanding performance.
We argue that the main reason is that they have to use the whole graph for attacks, resulting in the increasing time and space complexity as the data scale grows.
We present a practical metric named Degree Assortativity Change (DAC) to measure the impacts of adversarial attacks on graph data.
arXiv Detail & Related papers (2020-09-08T02:17:55Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z) - Stealing Links from Graph Neural Networks [72.85344230133248]
Recently, neural networks were extended to graph data, which are known as graph neural networks (GNNs)
Due to their superior performance, GNNs have many applications, such as healthcare analytics, recommender systems, and fraud detection.
We propose the first attacks to steal a graph from the outputs of a GNN model that is trained on the graph.
arXiv Detail & Related papers (2020-05-05T13:22:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.