Comparative Analysis of CPU and GPU Profiling for Deep Learning Models
- URL: http://arxiv.org/abs/2309.02521v3
- Date: Sat, 9 Dec 2023 03:46:49 GMT
- Title: Comparative Analysis of CPU and GPU Profiling for Deep Learning Models
- Authors: Dipesh Gyawali
- Abstract summary: This paper presents the time and memory allocation of CPU and GPU while training deep neural networks using Pytorch.
For a simpler network, there are not many significant improvements in GPU over the CPU.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning(DL) and Machine Learning(ML) applications are rapidly
increasing in recent days. Massive amounts of data are being generated over the
internet which can derive meaningful results by the use of ML and DL
algorithms. Hardware resources and open-source libraries have made it easy to
implement these algorithms. Tensorflow and Pytorch are one of the leading
frameworks for implementing ML projects. By using those frameworks, we can
trace the operations executed on both GPU and CPU to analyze the resource
allocations and consumption. This paper presents the time and memory allocation
of CPU and GPU while training deep neural networks using Pytorch. This paper
analysis shows that GPU has a lower running time as compared to CPU for deep
neural networks. For a simpler network, there are not many significant
improvements in GPU over the CPU.
Related papers
- Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
Large language models (LLMs) have revolutionized Natural Language Processing (NLP), but their size creates computational bottlenecks.
We introduce a novel approach to create accurate, sparse foundational versions of performant LLMs.
We show a total speedup on CPUs for sparse-quantized LLaMA models of up to 8.6x.
arXiv Detail & Related papers (2024-05-06T16:03:32Z) - High Performance Computing Applied to Logistic Regression: A CPU and GPU
Implementation Comparison [0.0]
We present a versatile GPU-based parallel version of Logistic Regression (LR)
Our implementation is a direct translation of the parallel Gradient Descent Logistic Regression algorithm proposed by X. Zou et al.
Our method is particularly advantageous for real-time prediction applications like image recognition, spam detection, and fraud detection.
arXiv Detail & Related papers (2023-08-19T14:49:37Z) - Learning representations by forward-propagating errors [0.0]
Back-propagation (BP) is widely used learning algorithm for neural network optimization.
Current neural network optimizaiton is performed in graphical processing unit (GPU) with compute unified device architecture (CUDA) programming.
In this paper, we propose a light, fast learning algorithm on CPU that is fast as acceleration on GPU.
arXiv Detail & Related papers (2023-08-17T13:56:26Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - PARTIME: Scalable and Parallel Processing Over Time with Deep Neural
Networks [68.96484488899901]
We present PARTIME, a library designed to speed up neural networks whenever data is continuously streamed over time.
PARTIME starts processing each data sample at the time in which it becomes available from the stream.
Experiments are performed in order to empirically compare PARTIME with classic non-parallel neural computations in online learning.
arXiv Detail & Related papers (2022-10-17T14:49:14Z) - Batch-efficient EigenDecomposition for Small and Medium Matrices [65.67315418971688]
EigenDecomposition (ED) is at the heart of many computer vision algorithms and applications.
We propose a QR-based ED method dedicated to the application scenarios of computer vision.
arXiv Detail & Related papers (2022-07-09T09:14:12Z) - PLSSVM: A (multi-)GPGPU-accelerated Least Squares Support Vector Machine [68.8204255655161]
Support Vector Machines (SVMs) are widely used in machine learning.
However, even modern and optimized implementations do not scale well for large non-trivial dense data sets on cutting-edge hardware.
PLSSVM can be used as a drop-in replacement for an LVM.
arXiv Detail & Related papers (2022-02-25T13:24:23Z) - Accelerating SLIDE Deep Learning on Modern CPUs: Vectorization,
Quantizations, Memory Optimizations, and More [26.748770505062378]
SLIDE is a C++ implementation of a sparse hash table based back-propagation.
We show how SLIDE's computations allow for a unique possibility of vectorization via AVX (Advanced Vector Extensions-512)
Our experiments are focused on large (hundreds of millions of parameters) recommendation and NLP models.
arXiv Detail & Related papers (2021-03-06T02:13:43Z) - Computational Performance Predictions for Deep Neural Network Training:
A Runtime-Based Approach [1.5857983167543392]
We present a new practical technique to help users make informed and cost-efficient GPU selections.
We make predictions by scaling the execution time of each operation in a training iteration from one GPU to another using either (i) wave scaling, a technique based on a GPU's execution model, or (ii) pre-trained multilayer perceptrons.
We implement our technique into a Python library called Surfer and find that it makes accurate iteration execution time predictions on ResNet-50, Inception v3, the Transformer, GNMT, and DCGAN.
arXiv Detail & Related papers (2021-01-31T20:17:46Z) - Hybrid Models for Learning to Branch [81.93868699246214]
We propose a new hybrid architecture for efficient branching on CPU machines.
The proposed architecture combines the expressive power of GNNs with computationally inexpensive multi-layer perceptrons (MLP) for branching.
arXiv Detail & Related papers (2020-06-26T21:03:45Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.