Rapid Exchange Cooling with Trapped Ions
- URL: http://arxiv.org/abs/2309.02581v2
- Date: Mon, 5 Feb 2024 18:43:22 GMT
- Title: Rapid Exchange Cooling with Trapped Ions
- Authors: Spencer D. Fallek, Vikram S. Sandhu, Ryan A. McGill, John M. Gray,
Holly N. Tinkey, Craig R. Clark and Kenton R. Brown
- Abstract summary: A quantum charge-coupled device (QCCD) is a leading candidate for advanced quantum information processing.
Here, we demonstrate a different approach we call exchange cooling.
Unlike sympathetic cooling, exchange cooling does not require trapping two different atomic species.
This approach validates the feasibility of a single-species QCCD processor, capable of fast quantum simulation and computation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The trapped-ion quantum charge-coupled device (QCCD) architecture is a
leading candidate for advanced quantum information processing. In current QCCD
implementations, imperfect ion transport and anomalous heating can excite ion
motion during a calculation. To counteract this, intermediate cooling is
necessary to maintain high-fidelity gate performance. Cooling the computational
ions sympathetically with ions of another species, a commonly employed
strategy, creates a significant runtime bottleneck. Here, we demonstrate a
different approach we call exchange cooling. Unlike sympathetic cooling,
exchange cooling does not require trapping two different atomic species. The
protocol introduces a bank of "coolant" ions which are repeatedly laser cooled.
A computational ion can then be cooled by transporting a coolant ion into its
proximity. We test this concept experimentally with two $^{40}\mathrm{Ca}^{+}$
ions, executing the necessary transport in 107 $\mathrm{\mu s}$, an order of
magnitude faster than typical sympathetic cooling durations. We remove over
96%, and as many as 102(5) quanta, of axial motional energy from the
computational ion. We verify that re-cooling the coolant ion does not decohere
the computational ion. This approach validates the feasibility of a
single-species QCCD processor, capable of fast quantum simulation and
computation.
Related papers
- Electromagnetically-Induced-Transparency Cooling of High-Nuclear-Spin Ions [2.6541853091340046]
EIT cooling of atoms or ions with a complex ground-state structure is challenging due to the lack of an isolated $Lambda$ system.
We overcome this issue by leveraging an EIT pumping laser to repopulate the cooling subspace.
Our approach can be adapted to atomic species possessing similar level structures.
arXiv Detail & Related papers (2024-08-22T02:31:41Z) - Laser Scheme for Doppler Cooling of the Hydroxyl Cation (OH$^+$) [0.0]
We report on a cycling scheme for Doppler cooling of trapped OH$+$ ions using transitions between the electronic ground state $X3Sigma-$ and the first excited triplet state $A3Pi$.
We have found that coupling into other electronic states is strongly suppressed, and have calculated the number of photon scatterings required to cool OH$+$ to a temperature where Raman sideband cooling can take over.
arXiv Detail & Related papers (2023-08-28T17:32:44Z) - Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical
Intersections [66.33913750180542]
Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces.
We predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction.
In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10-9$ cm$3$/s.
arXiv Detail & Related papers (2023-04-15T14:43:21Z) - Trapped Ions as an Architecture for Quantum Computing [110.83289076967895]
We describe one of the most promising platforms for the construction of a universal quantum computer.
We discuss from the physics involved in trapping ions in electromagnetic potentials to the Hamiltonian engineering needed to generate a universal set of logic gates.
arXiv Detail & Related papers (2022-07-23T22:58:50Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - A scalable helium gas cooling system for trapped-ion applications [51.715517570634994]
A modular cooling system is presented for use with multiple ion-trapping experiments simultaneously.
The cooling system is expected to deliver a net cooling power of 111 W at 70 K to up to four experiments.
arXiv Detail & Related papers (2021-06-14T16:37:54Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Direct observation of swap cooling in atom-ion collisions [0.0]
In a homo-nuclear atom-ion collision, an electron can resonantly hop from an ultracold atom onto the hot ion, converting the cold atom into a cold ion.
We demonstrate such swap cooling in a direct way as we experimentally observe how a single energetic ion loses energy in a cold atom cloud.
We expect swap cooling to occur quite universally in any homo-nuclear atom-ion collision.
arXiv Detail & Related papers (2020-12-14T17:55:34Z) - Robust dynamical exchange cooling with trapped ions [0.0]
We investigate theoretically the possibility for robust and fast cooling of a trapped atomic ion by transient interaction with a pre-cooled ion.
The transient coupling is achieved through dynamical control of the ions' equilibrium positions.
For settings appropriate to a currently operational trap in our laboratory, we find that robust performance could be achieved down to $6.3$ motional cycles.
arXiv Detail & Related papers (2020-02-11T19:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.