HC3 Plus: A Semantic-Invariant Human ChatGPT Comparison Corpus
- URL: http://arxiv.org/abs/2309.02731v4
- Date: Tue, 08 Oct 2024 08:58:25 GMT
- Title: HC3 Plus: A Semantic-Invariant Human ChatGPT Comparison Corpus
- Authors: Zhenpeng Su, Xing Wu, Wei Zhou, Guangyuan Ma, Songlin Hu,
- Abstract summary: ChatGPT has garnered significant interest due to its impressive performance.
There is growing concern about its potential risks.
Current datasets used for detecting ChatGPT-generated text primarily focus on question-answering tasks.
- Score: 22.302137281411646
- License:
- Abstract: ChatGPT has garnered significant interest due to its impressive performance; however, there is growing concern about its potential risks, particularly in the detection of AI-generated content (AIGC), which is often challenging for untrained individuals to identify. Current datasets used for detecting ChatGPT-generated text primarily focus on question-answering tasks, often overlooking tasks with semantic-invariant properties, such as summarization, translation, and paraphrasing. In this paper, we demonstrate that detecting model-generated text in semantic-invariant tasks is more challenging. To address this gap, we introduce a more extensive and comprehensive dataset that incorporates a wider range of tasks than previous work, including those with semantic-invariant properties. In addition, instruction fine-tuning has demonstrated superior performance across various tasks. In this paper, we explore the use of instruction fine-tuning models for detecting text generated by ChatGPT.
Related papers
- Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
Existing zero-shot detectors primarily focus on token-level distributions, which are vulnerable to real-world domain shifts.
We propose a more robust method that incorporates abstract elements, such as event transitions, as key deciding factors to detect machine versus human texts.
arXiv Detail & Related papers (2024-10-04T18:42:09Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
"Detect Any Text" is an advanced paradigm that unifies scene text detection, layout analysis, and document page detection into a cohesive, end-to-end model.
A pivotal innovation in DAT is the across-granularity interactive attention module, which significantly enhances the representation learning of text instances.
Tests demonstrate that DAT achieves state-of-the-art performances across a variety of text-related benchmarks.
arXiv Detail & Related papers (2024-05-30T07:25:23Z) - GPT-generated Text Detection: Benchmark Dataset and Tensor-based
Detection Method [4.802604527842989]
We present GPT Reddit dataset (GRiD), a novel Generative Pretrained Transformer (GPT)-generated text detection dataset.
The dataset consists of context-prompt pairs based on Reddit with human-generated and ChatGPT-generated responses.
To showcase the dataset's utility, we benchmark several detection methods on it, demonstrating their efficacy in distinguishing between human and ChatGPT-generated responses.
arXiv Detail & Related papers (2024-03-12T05:15:21Z) - DEMASQ: Unmasking the ChatGPT Wordsmith [63.8746084667206]
We propose an effective ChatGPT detector named DEMASQ, which accurately identifies ChatGPT-generated content.
Our method addresses two critical factors: (i) the distinct biases in text composition observed in human- and machine-generated content and (ii) the alterations made by humans to evade previous detection methods.
arXiv Detail & Related papers (2023-11-08T21:13:05Z) - DetectGPT-SC: Improving Detection of Text Generated by Large Language
Models through Self-Consistency with Masked Predictions [13.077729125193434]
Existing detectors are built on the assumption that there is a distribution gap between human-generated and AI-generated texts.
We find that large language models such as ChatGPT exhibit strong self-consistency in text generation and continuation.
We propose a new method for AI-generated texts detection based on self-consistency with masked predictions.
arXiv Detail & Related papers (2023-10-23T01:23:10Z) - Detecting ChatGPT: A Survey of the State of Detecting ChatGPT-Generated
Text [1.9643748953805937]
generative language models can potentially deceive by generating artificial text that appears to be human-generated.
This survey provides an overview of the current approaches employed to differentiate between texts generated by humans and ChatGPT.
arXiv Detail & Related papers (2023-09-14T13:05:20Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
We argue that as machine-generated text approximates human-like quality, the sample size needed for detection bounds increases.
We test various state-of-the-art text generators, including GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, and Llama-2-70B-Chat-HF, against detectors, including oBERTa-Large/Base-Detector, GPTZero.
arXiv Detail & Related papers (2023-04-10T17:47:39Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
This study provides a comprehensive and contemporary assessment of the most recent techniques in ChatGPT detection.
We have curated a benchmark dataset consisting of prompts from ChatGPT and humans, including diverse questions from medical, open Q&A, and finance domains.
Our evaluation results demonstrate that none of the existing methods can effectively detect ChatGPT-generated content.
arXiv Detail & Related papers (2023-04-04T03:04:28Z) - Paraphrase Detection: Human vs. Machine Content [3.8768839735240737]
Human-authored paraphrases exceed machine-generated ones in terms of difficulty, diversity, and similarity.
Transformers emerged as the most effective method across datasets with TF-IDF excelling on semantically diverse corpora.
arXiv Detail & Related papers (2023-03-24T13:25:46Z) - Exploring the Feasibility of ChatGPT for Event Extraction [31.175880361951172]
Event extraction is a fundamental task in natural language processing that involves identifying and extracting information about events mentioned in text.
ChatGPT provides an opportunity to solve language tasks with simple prompts without the need for task-specific datasets and fine-tuning.
We show that ChatGPT has, on average, only 51.04% of the performance of a task-specific model such as EEQA in long-tail and complex scenarios.
arXiv Detail & Related papers (2023-03-07T12:03:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.