Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs
- URL: http://arxiv.org/abs/2309.03118v1
- Date: Wed, 6 Sep 2023 15:55:01 GMT
- Title: Knowledge Solver: Teaching LLMs to Search for Domain Knowledge from
Knowledge Graphs
- Authors: Chao Feng, Xinyu Zhang, Zichu Fei
- Abstract summary: Large language models (LLMs) are versatile and can solve different tasks due to their emergent ability and generalizability.
In some previous works, additional modules like graph neural networks (GNNs) are trained on retrieved knowledge from external knowledge bases.
- Score: 19.0797968186656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs), such as ChatGPT and GPT-4, are versatile and
can solve different tasks due to their emergent ability and generalizability.
However, LLMs sometimes lack domain-specific knowledge to perform tasks, which
would also cause hallucination during inference. In some previous works,
additional modules like graph neural networks (GNNs) are trained on retrieved
knowledge from external knowledge bases, aiming to mitigate the problem of
lacking domain-specific knowledge. However, incorporating additional modules:
1) would need retraining additional modules when encountering novel domains; 2)
would become a bottleneck since LLMs' strong abilities are not fully utilized
for retrieval. In this paper, we propose a paradigm, termed Knowledge Solver
(KSL), to teach LLMs to search for essential knowledge from external knowledge
bases by harnessing their own strong generalizability. Specifically, we design
a simple yet effective prompt to transform retrieval into a multi-hop decision
sequence, which empowers LLMs with searching knowledge ability in zero-shot
manner. Additionally, KSL is able to provide complete retrieval paths and
therefore increase explainability of LLMs' reasoning processes. We conduct
experiments on three datasets: CommonsenseQA, OpenbookQA, and MedQA-USMLE, and
found that our approach improves LLM baseline performance by a relatively large
margin.
Related papers
- Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
Large language models (LLMs) perform surprisingly well and outperform human experts on many tasks.
This paper integrates and optimized a pipeline for selecting reasoning paths from KG based on LLM.
We also propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank.
arXiv Detail & Related papers (2024-04-16T08:28:16Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
Large language model (LLM) has achieved outstanding performance on various downstream tasks with its powerful natural language understanding and zero-shot capability, but LLM still suffers from knowledge limitation.
We propose a novel framework KnowledgeNavigator to address these challenges by efficiently and accurately retrieving external knowledge from knowledge graph.
We evaluate KnowledgeNavigator on multiple public KGQA benchmarks, the experiments show the framework has great effectiveness and generalization.
arXiv Detail & Related papers (2023-12-26T04:22:56Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Enabling Large Language Models to Learn from Rules [99.16680531261987]
We are inspired that humans can learn the new tasks or knowledge in another way by learning from rules.
We propose rule distillation, which first uses the strong in-context abilities of LLMs to extract the knowledge from the textual rules.
Our experiments show that making LLMs learn from rules by our method is much more efficient than example-based learning in both the sample size and generalization ability.
arXiv Detail & Related papers (2023-11-15T11:42:41Z) - RECALL: A Benchmark for LLMs Robustness against External Counterfactual
Knowledge [69.79676144482792]
This study aims to evaluate the ability of LLMs to distinguish reliable information from external knowledge.
Our benchmark consists of two tasks, Question Answering and Text Generation, and for each task, we provide models with a context containing counterfactual information.
arXiv Detail & Related papers (2023-11-14T13:24:19Z) - Learn to Refuse: Making Large Language Models More Controllable and Reliable through Knowledge Scope Limitation and Refusal Mechanism [0.0]
Large language models (LLMs) have demonstrated impressive language understanding and generation capabilities.
These models are not flawless and often produce responses that contain errors or misinformation.
We propose a refusal mechanism that instructs LLMs to refuse to answer challenging questions in order to avoid errors.
arXiv Detail & Related papers (2023-11-02T07:20:49Z) - Investigating the Factual Knowledge Boundary of Large Language Models
with Retrieval Augmentation [91.30946119104111]
We show that large language models (LLMs) possess unwavering confidence in their capabilities to respond to questions.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We also find that LLMs have a propensity to rely on the provided retrieval results when formulating answers.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Augmented Large Language Models with Parametric Knowledge Guiding [72.71468058502228]
Large Language Models (LLMs) have significantly advanced natural language processing (NLP) with their impressive language understanding and generation capabilities.
Their performance may be suboptimal for domain-specific tasks that require specialized knowledge due to limited exposure to the related data.
We propose the novel Parametric Knowledge Guiding (PKG) framework, which equips LLMs with a knowledge-guiding module to access relevant knowledge.
arXiv Detail & Related papers (2023-05-08T15:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.